We develop new techniques for proving lower bounds on the least singular value of random matrices with limited randomness. The matrices we consider have entries that are given by polynomials of a few underlying base random variables. This setting captures a core technical challenge for obtaining smoothed analysis guarantees in many algorithmic settings. Least singular value bounds often involve showing strong anti-concentration inequalities that are intricate and much less understood compared to concentration (or large deviation) bounds. First, we introduce a general technique involving a hierarchical $\epsilon$-nets to prove least singular value bounds. Our second tool is a new statement about least singular values to reason about higher-order lifts of smoothed matrices, and the action of linear operators on them. Apart from getting simpler proofs of existing smoothed analysis results, we use these tools to now handle more general families of random matrices. This allows us to produce smoothed analysis guarantees in several previously open settings. These include new smoothed analysis guarantees for power sum decompositions, subspace clustering and certifying robust entanglement of subspaces, where prior work could only establish least singular value bounds for fully random instances or only show non-robust genericity guarantees.
Representing speech as discretized units has numerous benefits in supporting downstream spoken language processing tasks. However, the approach has been less explored in speech synthesis of tonal languages like Mandarin Chinese. Our preliminary experiments on Chinese speech synthesis reveal the issue of "tone shift", where a synthesized speech utterance contains correct base syllables but incorrect tones. To address the issue, we propose the ToneUnit framework, which leverages annotated data with tone labels as CTC supervision to learn tone-aware discrete speech units for Mandarin Chinese speech. Our findings indicate that the discrete units acquired through the TonUnit resolve the "tone shift" issue in synthesized Chinese speech and yield favorable results in English synthesis. Moreover, the experimental results suggest that finite scalar quantization enhances the effectiveness of ToneUnit. Notably, ToneUnit can work effectively even with minimal annotated data.
Text data is commonly utilized as a primary input to enhance Speech Emotion Recognition (SER) performance and reliability. However, the reliance on human-transcribed text in most studies impedes the development of practical SER systems, creating a gap between in-lab research and real-world scenarios where Automatic Speech Recognition (ASR) serves as the text source. Hence, this study benchmarks SER performance using ASR transcripts with varying Word Error Rates (WERs) on well-known corpora: IEMOCAP, CMU-MOSI, and MSP-Podcast. Our evaluation includes text-only and bimodal SER with diverse fusion techniques, aiming for a comprehensive analysis that uncovers novel findings and challenges faced by current SER research. Additionally, we propose a unified ASR error-robust framework integrating ASR error correction and modality-gated fusion, achieving lower WER and higher SER results compared to the best-performing ASR transcript. This research is expected to provide insights into SER with ASR assistance, especially for real-world applications.
Recent developments in Large Language Models (LLMs) have demonstrated their remarkable capabilities across a range of tasks. Questions, however, persist about the nature of LLMs and their potential to integrate common-sense human knowledge when performing tasks involving information about the real physical world. This paper delves into these questions by exploring how LLMs can be extended to interact with and reason about the physical world through IoT sensors and actuators, a concept that we term "Penetrative AI". The paper explores such an extension at two levels of LLMs' ability to penetrate into the physical world via the processing of sensory signals. Our preliminary findings indicate that LLMs, with ChatGPT being the representative example in our exploration, have considerable and unique proficiency in employing the embedded world knowledge for interpreting IoT sensor data and reasoning over them about tasks in the physical realm. Not only this opens up new applications for LLMs beyond traditional text-based tasks, but also enables new ways of incorporating human knowledge in cyber-physical systems.
Reliability of AI systems is a fundamental concern for the successful deployment and widespread adoption of AI technologies. Unfortunately, the escalating complexity and heterogeneity of AI hardware systems make them increasingly susceptible to hardware faults, e.g., silent data corruptions (SDC), that can potentially corrupt model parameters. When this occurs during AI inference/servicing, it can potentially lead to incorrect or degraded model output for users, ultimately affecting the quality and reliability of AI services. In light of the escalating threat, it is crucial to address key questions: How vulnerable are AI models to parameter corruptions, and how do different components (such as modules, layers) of the models exhibit varying vulnerabilities to parameter corruptions? To systematically address this question, we propose a novel quantitative metric, Parameter Vulnerability Factor (PVF), inspired by architectural vulnerability factor (AVF) in computer architecture community, aiming to standardize the quantification of AI model vulnerability against parameter corruptions. We define a model parameter's PVF as the probability that a corruption in that particular model parameter will result in an incorrect output. In this paper, we present several use cases on applying PVF to three types of tasks/models during inference -- recommendation (DLRM), vision classification (CNN), and text classification (BERT), while presenting an in-depth vulnerability analysis on DLRM. PVF can provide pivotal insights to AI hardware designers in balancing the tradeoff between fault protection and performance/efficiency such as mapping vulnerable AI parameter components to well-protected hardware modules. PVF metric is applicable to any AI model and has a potential to help unify and standardize AI vulnerability/resilience evaluation practice.
Synthesized data from generative models is increasingly considered as an alternative to human-annotated data for fine-tuning Large Language Models. This raises concerns about model collapse: a drop in performance of models fine-tuned on generated data. Considering that it is easier for both humans and machines to tell between good and bad examples than to generate high-quality samples, we investigate the use of feedback on synthesized data to prevent model collapse. We derive theoretical conditions under which a Gaussian mixture classification model can achieve asymptotically optimal performance when trained on feedback-augmented synthesized data, and provide supporting simulations for finite regimes. We illustrate our theoretical predictions on two practical problems: computing matrix eigenvalues with transformers and news summarization with large language models, which both undergo model collapse when trained on model-generated data. We show that training from feedback-augmented synthesized data, either by pruning incorrect predictions or by selecting the best of several guesses, can prevent model collapse, validating popular approaches like RLHF.
In autonomous driving, the most challenging scenarios are the ones that can only be detected within their temporal context. Most video anomaly detection approaches focus either on surveillance or traffic accidents, which are only a subfield of autonomous driving. In this work, we present HF$^2$-VAD$_{AD}$, a variation of the HF$^2$-VAD surveillance video anomaly detection method for autonomous driving. We learn a representation of normality from a vehicle's ego perspective and evaluate pixel-wise anomaly detections in rare and critical scenarios.
As image recognition models become more prevalent, scalable coding methods for machines and humans gain more importance. Applications of image recognition models include traffic monitoring and farm management. In these use cases, the scalable coding method proves effective because the tasks require occasional image checking by humans. Existing image compression methods for humans and machines meet these requirements to some extent. However, these compression methods are effective solely for specific image recognition models. We propose a learning-based scalable image coding method for humans and machines that is compatible with numerous image recognition models. We combine an image compression model for machines with a compression model, providing additional information to facilitate image decoding for humans. The features in these compression models are fused using a feature fusion network to achieve efficient image compression. Our method's additional information compression model is adjusted to reduce the number of parameters by enabling combinations of features of different sizes in the feature fusion network. Our approach confirms that the feature fusion network efficiently combines image compression models while reducing the number of parameters. Furthermore, we demonstrate the effectiveness of the proposed scalable coding method by evaluating the image compression performance in terms of decoded image quality and bitrate.
Robots operating alongside humans often encounter unfamiliar environments that make autonomous task completion challenging. Though improving models and increasing dataset size can enhance a robot's performance in unseen environments, data collection and model refinement may be impractical in every environment. Approaches that utilize human demonstrations through manual operation can aid in refinement and generalization, but often require significant data collection efforts to generate enough demonstration data to achieve satisfactory task performance. Interactive approaches allow for humans to provide correction to robot action in real time, but intervention policies are often based on explicit factors related to state and task understanding that may be difficult to generalize. Addressing these challenges, we train a lightweight interaction policy that allows robots to decide when to proceed autonomously or request expert assistance at estimated times of uncertainty. An implicit estimate of uncertainty is learned via evaluating the feature extraction capabilities of the robot's visual navigation policy. By incorporating part-time human interaction, robots recover quickly from their mistakes, significantly improving the odds of task completion. Incorporating part-time interaction yields an increase in success of 0.38 with only a 0.3 expert interaction rate within the Habitat simulation environment using a simulated human expert. We further show success transferring this approach to a new domain with a real human expert, improving success from less than 0.1 with an autonomous agent to 0.92 with a 0.23 human interaction rate. This approach provides a practical means for robots to interact and learn from humans in real-world settings.
Autonomous driving has achieved a significant milestone in research and development over the last decade. There is increasing interest in the field as the deployment of self-operating vehicles on roads promises safer and more ecologically friendly transportation systems. With the rise of computationally powerful artificial intelligence (AI) techniques, autonomous vehicles can sense their environment with high precision, make safe real-time decisions, and operate more reliably without human interventions. However, intelligent decision-making in autonomous cars is not generally understandable by humans in the current state of the art, and such deficiency hinders this technology from being socially acceptable. Hence, aside from making safe real-time decisions, the AI systems of autonomous vehicles also need to explain how these decisions are constructed in order to be regulatory compliant across many jurisdictions. Our study sheds a comprehensive light on developing explainable artificial intelligence (XAI) approaches for autonomous vehicles. In particular, we make the following contributions. First, we provide a thorough overview of the present gaps with respect to explanations in the state-of-the-art autonomous vehicle industry. We then show the taxonomy of explanations and explanation receivers in this field. Thirdly, we propose a framework for an architecture of end-to-end autonomous driving systems and justify the role of XAI in both debugging and regulating such systems. Finally, as future research directions, we provide a field guide on XAI approaches for autonomous driving that can improve operational safety and transparency towards achieving public approval by regulators, manufacturers, and all engaged stakeholders.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.