亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Mining and analysis of the big data of Twitter conversations have been of significant interest to the scientific community in the fields of healthcare, epidemiology, big data, data science, computer science, and their related areas, as can be seen from several works in the last few years that focused on sentiment analysis and other forms of text analysis of tweets related to Ebola, E-Coli, Dengue, Human Papillomavirus, Middle East Respiratory Syndrome, Measles, Zika virus, H1N1, influenza like illness, swine flu, flu, Cholera, Listeriosis, cancer, Liver Disease, Inflammatory Bowel Disease, kidney disease, lupus, Parkinsons, Diphtheria, and West Nile virus. The recent outbreaks of COVID-19 and MPox have served as catalysts for Twitter usage related to seeking and sharing information, views, opinions, and sentiments involving both of these viruses. None of the prior works in this field analyzed tweets focusing on both COVID-19 and MPox simultaneously. To address this research gap, a total of 61,862 tweets that focused on MPox and COVID-19 simultaneously, posted between 7 May 2022 and 3 March 2023, were studied. The findings and contributions of this study are manifold. First, the results of sentiment analysis using the VADER approach show that nearly half the tweets had a negative sentiment. It was followed by tweets that had a positive sentiment and tweets that had a neutral sentiment, respectively. Second, this paper presents the top 50 hashtags used in these tweets. Third, it presents the top 100 most frequently used words in these tweets after performing tokenization, removal of stopwords, and word frequency analysis. Finally, a comprehensive comparative study that compares the contributions of this paper with 49 prior works in this field is presented to further uphold the relevance and novelty of this work.

相關內容

Evolutionary Computation algorithms have been used to solve optimization problems in relation with architectural, hyper-parameter or training configuration, forging the field known today as Neural Architecture Search. These algorithms have been combined with other techniques such as the pruning of Neural Networks, which reduces the complexity of the network, and the Transfer Learning, which lets the import of knowledge from another problem related to the one at hand. The usage of several criteria to evaluate the quality of the evolutionary proposals is also a common case, in which the performance and complexity of the network are the most used criteria. This work proposes MO-EvoPruneDeepTL, a multi-objective evolutionary pruning algorithm. MO-EvoPruneDeepTL uses Transfer Learning to adapt the last layers of Deep Neural Networks, by replacing them with sparse layers evolved by a genetic algorithm, which guides the evolution based in the performance, complexity and robustness of the network, being the robustness a great quality indicator for the evolved models. We carry out different experiments with several datasets to assess the benefits of our proposal. Results show that our proposal achieves promising results in all the objectives, and direct relation are presented among them. The experiments also show that the most influential neurons help us explain which parts of the input images are the most relevant for the prediction of the pruned neural network. Lastly, by virtue of the diversity within the Pareto front of pruning patterns produced by the proposal, it is shown that an ensemble of differently pruned models improves the overall performance and robustness of the trained networks.

Most of the current hypergraph learning methodologies and benchmarking datasets in the hypergraph realm are obtained by lifting procedures from their graph analogs, leading to overshadowing specific characteristics of hypergraphs. This paper attempts to confront some pending questions in that regard: Q1 Can the concept of homophily play a crucial role in Hypergraph Neural Networks (HNNs)? Q2 Is there room for improving current HNN architectures by carefully addressing specific characteristics of higher-order networks? Q3 Do existing datasets provide a meaningful benchmark for HNNs? To address them, we first introduce a novel conceptualization of homophily in higher-order networks based on a Message Passing (MP) scheme, unifying both the analytical examination and the modeling of higher-order networks. Further, we investigate some natural, yet mostly unexplored, strategies for processing higher-order structures within HNNs such as keeping hyperedge-dependent node representations, or performing node/hyperedge stochastic samplings, leading us to the most general MP formulation up to date -MultiSet-, as well as to an original architecture design, MultiSetMixer. Finally, we conduct an extensive set of experiments that contextualize our proposals and successfully provide insights about our inquiries.

Semantic communication is focused on optimizing the exchange of information by transmitting only the most relevant data required to convey the intended message to the receiver and achieve the desired communication goal. For example, if we consider images as the information and the goal of the communication is object detection at the receiver side, the semantic of information would be the objects in each image. Therefore, by only transferring the semantics of images we can achieve the communication goal. In this paper, we propose a design framework for implementing semantic-aware and goal-oriented communication of images. To achieve this, we first define the baseline problem as a set of mathematical problems that can be optimized to improve the efficiency and effectiveness of the communication system. We consider two scenarios in which either the data rate or the error at the receiver is the limiting constraint. Our proposed system model and solution is inspired by the concept of auto-encoders, where the encoder and the decoder are respectively implemented at the transmitter and receiver to extract semantic information for specific object detection goals. Our numerical results validate the proposed design framework to achieve low error or near-optimal in a goal-oriented communication system while reducing the amount of data transfers.

With the mainstream integration of machine learning into security-sensitive domains such as healthcare and finance, concerns about data privacy have intensified. Conventional artificial neural networks (ANNs) have been found vulnerable to several attacks that can leak sensitive data. Particularly, model inversion (MI) attacks enable the reconstruction of data samples that have been used to train the model. Neuromorphic architectures have emerged as a paradigm shift in neural computing, enabling asynchronous and energy-efficient computation. However, little to no existing work has investigated the privacy of neuromorphic architectures against model inversion. Our study is motivated by the intuition that the non-differentiable aspect of spiking neural networks (SNNs) might result in inherent privacy-preserving properties, especially against gradient-based attacks. To investigate this hypothesis, we propose a thorough exploration of SNNs' privacy-preserving capabilities. Specifically, we develop novel inversion attack strategies that are comprehensively designed to target SNNs, offering a comparative analysis with their conventional ANN counterparts. Our experiments, conducted on diverse event-based and static datasets, demonstrate the effectiveness of the proposed attack strategies and therefore questions the assumption of inherent privacy-preserving in neuromorphic architectures.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering and recommendation systems, etc. According to the graph types, the existing KGR models can be roughly divided into three categories, \textit{i.e.,} static models, temporal models, and multi-modal models. The early works in this domain mainly focus on static KGR and tend to directly apply general knowledge graph embedding models to the reasoning task. However, these models are not suitable for more complex but practical tasks, such as inductive static KGR, temporal KGR, and multi-modal KGR. To this end, multiple works have been developed recently, but no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the preliminaries, summaries of KGR models, and typical datasets are introduced and discussed consequently. Moreover, we discuss the challenges and potential opportunities. The corresponding open-source repository is shared on GitHub: //github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Graph neural networks (GNNs) have demonstrated a significant boost in prediction performance on graph data. At the same time, the predictions made by these models are often hard to interpret. In that regard, many efforts have been made to explain the prediction mechanisms of these models from perspectives such as GNNExplainer, XGNN and PGExplainer. Although such works present systematic frameworks to interpret GNNs, a holistic review for explainable GNNs is unavailable. In this survey, we present a comprehensive review of explainability techniques developed for GNNs. We focus on explainable graph neural networks and categorize them based on the use of explainable methods. We further provide the common performance metrics for GNNs explanations and point out several future research directions.

With the advent of 5G commercialization, the need for more reliable, faster, and intelligent telecommunication systems are envisaged for the next generation beyond 5G (B5G) radio access technologies. Artificial Intelligence (AI) and Machine Learning (ML) are not just immensely popular in the service layer applications but also have been proposed as essential enablers in many aspects of B5G networks, from IoT devices and edge computing to cloud-based infrastructures. However, most of the existing surveys in B5G security focus on the performance of AI/ML models and their accuracy, but they often overlook the accountability and trustworthiness of the models' decisions. Explainable AI (XAI) methods are promising techniques that would allow system developers to identify the internal workings of AI/ML black-box models. The goal of using XAI in the security domain of B5G is to allow the decision-making processes of the security of systems to be transparent and comprehensible to stakeholders making the systems accountable for automated actions. In every facet of the forthcoming B5G era, including B5G technologies such as RAN, zero-touch network management, E2E slicing, this survey emphasizes the role of XAI in them and the use cases that the general users would ultimately enjoy. Furthermore, we presented the lessons learned from recent efforts and future research directions on top of the currently conducted projects involving XAI.

北京阿比特科技有限公司