Medical image semantic segmentation techniques can help identify tumors automatically from computed tomography (CT) scans. In this paper, we propose a Contextual and Attentional feature Fusions enhanced Convolutional Neural Network (CNN) and Transformer hybrid network (CAFCT-Net) for liver tumor segmentation. We incorporate three novel modules in the CAFCT-Net architecture: Attentional Feature Fusion (AFF), Atrous Spatial Pyramid Pooling (ASPP) of DeepLabv3, and Attention Gates (AGs) to improve contextual information related to tumor boundaries for accurate segmentation. Experimental results show that the proposed model achieves a mean Intersection over Union (IoU) of 76.54% and Dice coefficient of 84.29%, respectively, on the Liver Tumor Segmentation Benchmark (LiTS) dataset, outperforming pure CNN or Transformer methods, e.g., Attention U-Net and PVTFormer.
We report on a novel application of computer vision techniques to extract beyond the Standard Model parameters directly from high energy physics flavor data. We propose a simple but novel data representation that transforms the angular and kinematic distributions into "quasi-images", which are used to train a convolutional neural network to perform regression tasks, similar to fitting. As a proof-of-concept, we train a 34-layer Residual Neural Network to regress on these images and determine information about the Wilson Coefficient $C_{9}$ in Monte Carlo simulations of $B^0 \rightarrow K^{*0}\mu^{+}\mu^{-}$ decays. The method described here can be generalized and may find applicability across a variety of experiments.
The rise of large-scale quantum computing poses a significant threat to traditional cryptographic security measures. Quantum attacks undermine current asymmetric cryptographic algorithms, rendering them ineffective. Even symmetric key cryptography is vulnerable, albeit to a lesser extent, suggesting longer keys or extended hash functions for security. Thus, current cryptographic solutions are inadequate against emerging quantum threats. Organizations must transition to quantum-safe environments with robust continuity plans and meticulous risk management. This study explores the challenges of migrating to quantum-safe cryptographic states, introducing a comprehensive security risk assessment framework. We propose a security risk assessment framework that examines vulnerabilities across algorithms, certificates, and protocols throughout the migration process (pre-migration, during migration, post-migration). We link these vulnerabilities to the STRIDE threat model to assess their impact and likelihood. Then, we discuss practical mitigation strategies for critical components like algorithms, public key infrastructures, and protocols. Our study not only identifies potential attacks and vulnerabilities at each layer and migration stage but also suggests possible countermeasures and alternatives to enhance system resilience, empowering organizations to construct a secure infrastructure for the quantum era. Through these efforts, we establish the foundation for enduring security in networked systems amid the challenges of the quantum era.
This work explores expanding the capabilities of large language models (LLMs) pretrained on text to generate 3D meshes within a unified model. This offers key advantages of (1) leveraging spatial knowledge already embedded in LLMs, derived from textual sources like 3D tutorials, and (2) enabling conversational 3D generation and mesh understanding. A primary challenge is effectively tokenizing 3D mesh data into discrete tokens that LLMs can process seamlessly. To address this, we introduce LLaMA-Mesh, a novel approach that represents the vertex coordinates and face definitions of 3D meshes as plain text, allowing direct integration with LLMs without expanding the vocabulary. We construct a supervised fine-tuning (SFT) dataset enabling pretrained LLMs to (1) generate 3D meshes from text prompts, (2) produce interleaved text and 3D mesh outputs as required, and (3) understand and interpret 3D meshes. Our work is the first to demonstrate that LLMs can be fine-tuned to acquire complex spatial knowledge for 3D mesh generation in a text-based format, effectively unifying the 3D and text modalities. LLaMA-Mesh achieves mesh generation quality on par with models trained from scratch while maintaining strong text generation performance.
The Open Radio Access Network (O-RAN) architecture empowers intelligent and automated optimization of the RAN through applications deployed on the RAN Intelligent Controller (RIC) platform, enabling capabilities beyond what is achievable with traditional RAN solutions. Within this paradigm, Traffic Steering (TS) emerges as a pivotal RIC application that focuses on optimizing cell-level mobility settings in near-real-time, aiming to significantly improve network spectral efficiency. In this paper, we design a novel TS algorithm based on a Cascade Reinforcement Learning (CaRL) framework. We propose state space factorization and policy decomposition to reduce the need for large models and well-labeled datasets. For each sub-state space, an RL sub-policy will be trained to learn an optimized mapping onto the action space. To apply CaRL on new network regions, we propose a knowledge transfer approach to initialize a new sub-policy based on knowledge learned by the trained policies. To evaluate CaRL, we build a data-driven and scalable RIC digital twin (DT) that is modeled using important real-world data, including network configuration, user geo-distribution, and traffic demand, among others, from a tier-1 mobile operator in the US. We evaluate CaRL on two DT scenarios representing two network clusters in two different cities and compare its performance with the business-as-usual (BAU) policy and other competing optimization approaches using heuristic and Q-table algorithms. Benchmarking results show that CaRL performs the best and improves the average cluster-aggregated downlink throughput over the BAU policy by 24% and 18% in these two scenarios, respectively.
Image classification is a computer vision task where a model analyzes an image to categorize it into a specific label. Vision Transformers (ViT) improve this task by leveraging self-attention to capture complex patterns and long range relationships between image patches. However, a key challenge for ViTs is efficiently incorporating multiscale feature representations, which is inherent in CNNs through their hierarchical structure. In this paper, we introduce the Scale-Aware Graph Attention Vision Transformer (SAG-ViT), a novel framework that addresses this challenge by integrating multi-scale features. Using EfficientNet as a backbone, the model extracts multi-scale feature maps, which are divided into patches to preserve semantic information. These patches are organized into a graph based on spatial and feature similarities, with a Graph Attention Network (GAT) refining the node embeddings. Finally, a Transformer encoder captures long-range dependencies and complex interactions. The SAG-ViT is evaluated on benchmark datasets, demonstrating its effectiveness in enhancing image classification performance.
Human Mesh Recovery (HMR) from a single RGB image is a highly ambiguous problem, as an infinite set of 3D interpretations can explain the 2D observation equally well. Nevertheless, most HMR methods overlook this issue and make a single prediction without accounting for this ambiguity. A few approaches generate a distribution of human meshes, enabling the sampling of multiple predictions; however, none of them is competitive with the latest single-output model when making a single prediction. This work proposes a new approach based on masked generative modeling. By tokenizing the human pose and shape, we formulate the HMR task as generating a sequence of discrete tokens conditioned on an input image. We introduce MEGA, a MaskEd Generative Autoencoder trained to recover human meshes from images and partial human mesh token sequences. Given an image, our flexible generation scheme allows us to predict a single human mesh in deterministic mode or to generate multiple human meshes in stochastic mode. Experiments on in-the-wild benchmarks show that MEGA achieves state-of-the-art performance in deterministic and stochastic modes, outperforming single-output and multi-output approaches.
Key-Value (KV) caching is a common technique to enhance the computational efficiency of Large Language Models (LLMs), but its memory overhead grows rapidly with input length. Prior work has shown that not all tokens are equally important for text generation, proposing layer-level KV cache compression to selectively retain key information. Recognizing the distinct roles of attention heads in generation, we propose HeadKV, a head-level KV cache compression method, and HeadKV-R2, which leverages a novel contextual reasoning ability estimation for compression. Our approach operates at the level of individual heads, estimating their importance for contextual QA tasks that require both retrieval and reasoning capabilities. Extensive experiments across diverse benchmarks (LongBench, LooGLE), model architectures (e.g., Llama-3-8B-Instruct, Mistral-7B-Instruct), and long-context abilities tests demonstrate that our head-level KV cache compression significantly outperforms strong baselines, particularly in low-resource settings (KV size = 64 & 128). Notably, our method retains just 1.5% of the KV cache while achieving 97% of the performance of the full KV cache on the contextual question answering benchmark.Codes are available at //github.com/FYYFU/HeadKV
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus to generate a new token and keeps all generated tokens in the vocabulary, it unavoidably holds tokens that primarily act as components of a longer token and appear infrequently on their own. We term such tokens as Scaffold Tokens. Due to their infrequent occurrences in the text corpus, Scaffold Tokens pose a learning imbalance issue. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE method. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling and even machine translation, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness.
Current Vehicle-to-Everything (V2X) systems have significantly enhanced 3D object detection using LiDAR and camera data. However, these methods suffer from performance degradation in adverse weather conditions. The weatherrobust 4D radar provides Doppler and additional geometric information, raising the possibility of addressing this challenge. To this end, we present V2X-R, the first simulated V2X dataset incorporating LiDAR, camera, and 4D radar. V2X-R contains 12,079 scenarios with 37,727 frames of LiDAR and 4D radar point clouds, 150,908 images, and 170,859 annotated 3D vehicle bounding boxes. Subsequently, we propose a novel cooperative LiDAR-4D radar fusion pipeline for 3D object detection and implement it with various fusion strategies. To achieve weather-robust detection, we additionally propose a Multi-modal Denoising Diffusion (MDD) module in our fusion pipeline. MDD utilizes weather-robust 4D radar feature as a condition to prompt the diffusion model to denoise noisy LiDAR features. Experiments show that our LiDAR-4D radar fusion pipeline demonstrates superior performance in the V2X-R dataset. Over and above this, our MDD module further improved the performance of basic fusion model by up to 5.73%/6.70% in foggy/snowy conditions with barely disrupting normal performance. The dataset and code will be publicly available at: //github.com/ylwhxht/V2X-R.
Achieving robust and precise pose estimation in dynamic scenes is a significant research challenge in Visual Simultaneous Localization and Mapping (SLAM). Recent advancements integrating Gaussian Splatting into SLAM systems have proven effective in creating high-quality renderings using explicit 3D Gaussian models, significantly improving environmental reconstruction fidelity. However, these approaches depend on a static environment assumption and face challenges in dynamic environments due to inconsistent observations of geometry and photometry. To address this problem, we propose DG-SLAM, the first robust dynamic visual SLAM system grounded in 3D Gaussians, which provides precise camera pose estimation alongside high-fidelity reconstructions. Specifically, we propose effective strategies, including motion mask generation, adaptive Gaussian point management, and a hybrid camera tracking algorithm to improve the accuracy and robustness of pose estimation. Extensive experiments demonstrate that DG-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, and novel-view synthesis in dynamic scenes, outperforming existing methods meanwhile preserving real-time rendering ability.