亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Scientists involved in scientific misconduct may face social stigmatization, leading to isolation and limited opportunities for collaboration. The reputation of every individual is reflected on the team, as the fraud attempted by any member will be reflected on the team. Earlier studies pointed out the impact of citation penalty on the prior work of coauthors, the effect of retraction on a co-author's research career, and stigmatization through mere association. This paper explores the formation and dynamics of the networks of authors who faced retractions and their "innocent coauthors" who never faced retractions in their careers. Leveraging a dataset of 5972 retracted papers involving 24209 authors, we investigate whether scientific misconduct reduces collaborative ties of misconducting authors as opposed to those who never faced allegations of academic misconduct. We observe that the network structure of authors involved in retractions does not change significantly over the years compared to that of the "innocent coauthors". Our results suggest that stigmatization rarely affects the collaboration network of stigmatized authors. Our findings have implications for institutions adopting stringent measures and fostering ethical practices research.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

The allure of aesthetic appeal in images captivates our senses, yet the underlying intricacies of aesthetic preferences remain elusive. In this study, we pioneer a novel perspective by utilizing machine learning models that focus on aesthetic attributes known to influence preferences. Through a data mining approach, our models process these attributes as inputs to predict the aesthetic scores of images. Moreover, to delve deeper and obtain interpretable explanations regarding the factors driving aesthetic preferences, we utilize the popular Explainable AI (XAI) technique known as SHapley Additive exPlanations (SHAP). Our methodology involves employing various machine learning models, including Random Forest, XGBoost, Support Vector Regression, and Multilayer Perceptron, to compare their performances in accurately predicting aesthetic scores, and consistently observing results in conjunction with SHAP. We conduct experiments on three image aesthetic benchmarks, providing insights into the roles of attributes and their interactions. Ultimately, our study aims to shed light on the complex nature of aesthetic preferences in images through machine learning and provides a deeper understanding of the attributes that influence aesthetic judgements.

Unsupervised learning of facial representations has gained increasing attention for face understanding ability without heavily relying on large-scale annotated datasets. However, it remains unsolved due to the coupling of facial identities, expressions, and external factors like pose and light. Prior methods primarily focus on 2D factors and pixel-level consistency, leading to incomplete disentangling and suboptimal performance in downstream tasks. In this paper, we propose LatentFace, a novel unsupervised disentangling framework for facial expression and identity representation. We suggest the disentangling problem should be performed in latent space and propose the solution using a 3D-aware latent diffusion model. First, we introduce a 3D-aware autoencoder to encode face images into 3D latent embeddings. Second, we propose a novel representation diffusion model (RDM) to disentangle 3D latent into facial identity and expression. Consequently, our method achieves state-of-the-art performance in facial expression recognition and face verification among unsupervised facial representation learning models. Codes are available at \url{//github.com/ryanhe312/LatentFace}.

In the race towards quantum computing, the potential benefits of quantum neural networks (QNNs) have become increasingly apparent. However, Noisy Intermediate-Scale Quantum (NISQ) processors are prone to errors, which poses a significant challenge for the execution of complex algorithms or quantum machine learning. To ensure the quality and security of QNNs, it is crucial to explore the impact of noise on their performance. This paper provides a comprehensive analysis of the impact of noise on QNNs, examining the Mottonen state preparation algorithm under various noise models and studying the degradation of quantum states as they pass through multiple layers of QNNs. Additionally, the paper evaluates the effect of noise on the performance of pre-trained QNNs and highlights the challenges posed by noise models in quantum computing. The findings of this study have significant implications for the development of quantum software, emphasizing the importance of prioritizing stability and noise-correction measures when developing QNNs to ensure reliable and trustworthy results. This paper contributes to the growing body of literature on quantum computing and quantum machine learning, providing new insights into the impact of noise on QNNs and paving the way towards the development of more robust and efficient quantum algorithms.

Although the relationship between temperature and emotional states has been investigated in the field of haptics, it remains unknown if, or in what direction, temperature affects emotional states. We approach this question at the intersection of haptics and psychology using a custom-built thermal device and emotional responses based on photos from the International Affective Picture System (IAPS) library. Unlike past research, this study incorporates deception and a control (i.e., neutral temperature) condition. One hundred and twenty naive subjects reported their emotional responses to fifty-six images varying on normative arousal and valence ratings while being exposed to a cool~(30{\deg}C), neutral (33{\deg}C), or warm (36{\deg}C) temperature applied to the upper back. Participants exposed to warm temperatures reported higher arousal ratings in some image categories than participants exposed to neutral or cool temperatures. Valence ratings were decreased in warm conditions compared to neutral conditions. The emotion wheel was used as a complementary method of affective response measurement, and exploratory analysis methods were implemented. Although the valence and arousal showed statistical significance, the emotion wheel results did not demonstrate any significant differences between the temperature conditions.

Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.

Recently, graph neural networks have been gaining a lot of attention to simulate dynamical systems due to their inductive nature leading to zero-shot generalizability. Similarly, physics-informed inductive biases in deep-learning frameworks have been shown to give superior performance in learning the dynamics of physical systems. There is a growing volume of literature that attempts to combine these two approaches. Here, we evaluate the performance of thirteen different graph neural networks, namely, Hamiltonian and Lagrangian graph neural networks, graph neural ODE, and their variants with explicit constraints and different architectures. We briefly explain the theoretical formulation highlighting the similarities and differences in the inductive biases and graph architecture of these systems. We evaluate these models on spring, pendulum, gravitational, and 3D deformable solid systems to compare the performance in terms of rollout error, conserved quantities such as energy and momentum, and generalizability to unseen system sizes. Our study demonstrates that GNNs with additional inductive biases, such as explicit constraints and decoupling of kinetic and potential energies, exhibit significantly enhanced performance. Further, all the physics-informed GNNs exhibit zero-shot generalizability to system sizes an order of magnitude larger than the training system, thus providing a promising route to simulate large-scale realistic systems.

Face recognition technology has advanced significantly in recent years due largely to the availability of large and increasingly complex training datasets for use in deep learning models. These datasets, however, typically comprise images scraped from news sites or social media platforms and, therefore, have limited utility in more advanced security, forensics, and military applications. These applications require lower resolution, longer ranges, and elevated viewpoints. To meet these critical needs, we collected and curated the first and second subsets of a large multi-modal biometric dataset designed for use in the research and development (R&D) of biometric recognition technologies under extremely challenging conditions. Thus far, the dataset includes more than 350,000 still images and over 1,300 hours of video footage of approximately 1,000 subjects. To collect this data, we used Nikon DSLR cameras, a variety of commercial surveillance cameras, specialized long-rage R&D cameras, and Group 1 and Group 2 UAV platforms. The goal is to support the development of algorithms capable of accurately recognizing people at ranges up to 1,000 m and from high angles of elevation. These advances will include improvements to the state of the art in face recognition and will support new research in the area of whole-body recognition using methods based on gait and anthropometry. This paper describes methods used to collect and curate the dataset, and the dataset's characteristics at the current stage.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.

北京阿比特科技有限公司