亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A machine learning (ML) feature network is a graph that connects ML features in learning tasks based on their similarity. This network representation allows us to view feature vectors as functions on the network. By leveraging function operations from Fourier analysis and from functional analysis, one can easily generate new and novel features, making use of the graph structure imposed on the feature vectors. Such network structures have previously been studied implicitly in image processing and computational biology. We thus describe feature networks as graph structures imposed on feature vectors, and provide applications in machine learning. One application involves graph-based generalizations of convolutional neural networks, involving structured deep learning with hierarchical representations of features that have varying depth or complexity. This extends also to learning algorithms that are able to generate useful new multilevel features. Additionally, we discuss the use of feature networks to engineer new features, which can enhance the expressiveness of the model. We give a specific example of a deep tree-structured feature network, where hierarchical connections are formed through feature clustering and feed-forward learning. This results in low learning complexity and computational efficiency. Unlike "standard" neural features which are limited to modulated (thresholded) linear combinations of adjacent ones, feature networks offer more general feedforward dependencies among features. For example, radial basis functions or graph structure-based dependencies between features can be utilized.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Graph neural networks (GNNs) are popular machine learning models for graphs with many applications across scientific domains. However, GNNs are considered black box models, and it is challenging to understand how the model makes predictions. Game theoric Shapley value approaches are popular explanation methods in other domains but are not well-studied for graphs. Some studies have proposed Shapley value based GNN explanations, yet they have several limitations: they consider limited samples to approximate Shapley values; some mainly focus on small and large coalition sizes, and they are an order of magnitude slower than other explanation methods, making them inapplicable to even moderate-size graphs. In this work, we propose GNNShap, which provides explanations for edges since they provide more natural explanations for graphs and more fine-grained explanations. We overcome the limitations by sampling from all coalition sizes, parallelizing the sampling on GPUs, and speeding up model predictions by batching. GNNShap gives better fidelity scores and faster explanations than baselines on real-world datasets. The code is available at //github.com/HipGraph/GNNShap.

Split federated learning (SFL) is a recent distributed approach for collaborative model training among multiple clients. In SFL, a global model is typically split into two parts, where clients train one part in a parallel federated manner, and a main server trains the other. Despite the recent research on SFL algorithm development, the convergence analysis of SFL is missing in the literature, and this paper aims to fill this gap. The analysis of SFL can be more challenging than that of federated learning (FL), due to the potential dual-paced updates at the clients and the main server. We provide convergence analysis of SFL for strongly convex and general convex objectives on heterogeneous data. The convergence rates are $O(1/T)$ and $O(1/\sqrt[3]{T})$, respectively, where $T$ denotes the total number of rounds for SFL training. We further extend the analysis to non-convex objectives and where some clients may be unavailable during training. Numerical experiments validate our theoretical results and show that SFL outperforms FL and split learning (SL) when data is highly heterogeneous across a large number of clients.

Preference learning (PL) with large language models (LLMs) aims to align the LLMs' generations with human preferences. Previous work on reinforcement learning from human feedback (RLHF) has demonstrated promising results in in-distribution PL. However, due to the difficulty of obtaining human feedback, discretely training reward models for every encountered distribution is challenging. Thus, out-of-distribution (OOD) PL is practically useful for enhancing the generalization ability of LLMs with limited preference feedback. This work addresses OOD PL by optimizing a general reward model through a meta-learning approach. During meta-training, a bilevel optimization algorithm is utilized to learn a reward model capable of guiding policy learning to align with human preferences across various distributions. When encountering a test distribution, the meta-test procedure conducts regularized policy optimization using the learned reward model for PL. We theoretically demonstrate the convergence rate of the bilevel optimization algorithm under reasonable assumptions. Additionally, we conduct experiments on two text generation tasks across 20 held-out domains and outperform a variety of strong baselines across various evaluation metrics.

Hidden Markov Models with an underlying Mixture of Gaussian structure have proven effective in learning Human-Robot Interactions from demonstrations for various interactive tasks via Gaussian Mixture Regression. However, a mismatch occurs when segmenting the interaction using only the observed state of the human compared to the joint state of the human and the robot. To enhance this underlying segmentation and subsequently the predictive abilities of such Gaussian Mixture-based approaches, we take a hierarchical approach by learning an additional mixture distribution on the states at the transition boundary. This helps prevent misclassifications that usually occur in such states. We find that our framework improves the performance of the underlying Gaussian Mixture-based approach, which we evaluate on various interactive tasks such as handshaking and fistbumps.

Federated learning (FL) is a promising framework for learning from distributed data while maintaining privacy. The development of efficient FL algorithms encounters various challenges, including heterogeneous data and systems, limited communication capacities, and constrained local computational resources. Recently developed FedADMM methods show great resilience to both data and system heterogeneity. However, they still suffer from performance deterioration if the hyperparameters are not carefully tuned. To address this issue, we propose an inexact and self-adaptive FedADMM algorithm, termed FedADMM-InSa. First, we design an inexactness criterion for the clients' local updates to eliminate the need for empirically setting the local training accuracy. This inexactness criterion can be assessed by each client independently based on its unique condition, thereby reducing the local computational cost and mitigating the undesirable straggle effect. The convergence of the resulting inexact ADMM is proved under the assumption of strongly convex loss functions. Additionally, we present a self-adaptive scheme that dynamically adjusts each client's penalty parameter, enhancing algorithm robustness by mitigating the need for empirical penalty parameter choices for each client. Extensive numerical experiments on both synthetic and real-world datasets are conducted. As validated by some numerical tests, our proposed algorithm can reduce the clients' local computational load significantly and also accelerate the learning process compared to the vanilla FedADMM.

As the number of pre-trained machine learning (ML) models is growing exponentially, data reduction tools are not catching up. Existing data reduction techniques are not specifically designed for pre-trained model (PTM) dataset files. This is largely due to a lack of understanding of the patterns and characteristics of these datasets, especially those relevant to data reduction and compressibility. This paper presents the first, exhaustive analysis to date of PTM datasets on storage compressibility. Our analysis spans different types of data reduction and compression techniques, from hash-based data deduplication, data similarity detection, to dictionary-coding compression. Our analysis explores these techniques at three data granularity levels, from model layers, model chunks, to model parameters. We draw new observations that indicate that modern data reduction tools are not effective when handling PTM datasets. There is a pressing need for new compression methods that take into account PTMs' data characteristics for effective storage reduction. Motivated by our findings, we design ELF, a simple yet effective, error-bounded, lossy floating-point compression method. ELF transforms floating-point parameters in such a way that the common exponent field of the transformed parameters can be completely eliminated to save storage space. We develop Elves, a compression framework that integrates ELF along with several other data reduction methods. Elves uses the most effective method to compress PTMs that exhibit different patterns. Evaluation shows that Elves achieves an overall compression ratio of $1.52\times$, which is $1.31\times$, $1.32\times$ and $1.29\times$ higher than a general-purpose compressor (zstd), an error-bounded lossy compressor (SZ3), and the uniform model quantization, respectively, with negligible model accuracy loss.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

Generalization to out-of-distribution (OOD) data is a capability natural to humans yet challenging for machines to reproduce. This is because most learning algorithms strongly rely on the i.i.d.~assumption on source/target data, which is often violated in practice due to domain shift. Domain generalization (DG) aims to achieve OOD generalization by using only source data for model learning. Since first introduced in 2011, research in DG has made great progresses. In particular, intensive research in this topic has led to a broad spectrum of methodologies, e.g., those based on domain alignment, meta-learning, data augmentation, or ensemble learning, just to name a few; and has covered various vision applications such as object recognition, segmentation, action recognition, and person re-identification. In this paper, for the first time a comprehensive literature review is provided to summarize the developments in DG for computer vision over the past decade. Specifically, we first cover the background by formally defining DG and relating it to other research fields like domain adaptation and transfer learning. Second, we conduct a thorough review into existing methods and present a categorization based on their methodologies and motivations. Finally, we conclude this survey with insights and discussions on future research directions.

Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.

北京阿比特科技有限公司