亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum computing is a promising technology that harnesses the peculiarities of quantum mechanics to deliver computational speedups for some problems that are intractable to solve on a classical computer. Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in terms of chip size and error rates. Shallow quantum circuits with uncomplicated topologies are essential for successful applications in the NISQ era. Based on matrix analysis, we derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions. The depth of the compressed circuits is independent of simulation time and grows linearly with the number of spins. The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $\mathcal{O}(10^3)$ spins. The resulting quantum circuits have a simple nearest-neighbor topology, which makes them ideally suited for NISQ devices.

相關內容

Compressive learning forms the exciting intersection between compressed sensing and statistical learning where one exploits forms of sparsity and structure to reduce the memory and/or computational complexity of the learning task. In this paper, we look at the independent component analysis (ICA) model through the compressive learning lens. In particular, we show that solutions to the cumulant based ICA model have particular structure that induces a low dimensional model set that resides in the cumulant tensor space. By showing a restricted isometry property holds for random cumulants e.g. Gaussian ensembles, we prove the existence of a compressive ICA scheme. Thereafter, we propose two algorithms of the form of an iterative projection gradient (IPG) and an alternating steepest descent (ASD) algorithm for compressive ICA, where the order of compression asserted from the restricted isometry property is realised through empirical results. We provide analysis of the CICA algorithms including the effects of finite samples. The effects of compression are characterised by a trade-off between the sketch size and the statistical efficiency of the ICA estimates. By considering synthetic and real datasets, we show the substantial memory gains achieved over well-known ICA algorithms by using one of the proposed CICA algorithms. Finally, we conclude the paper with open problems including interesting challenges from the emerging field of compressive learning.

Optimizing parameterized quantum circuits promises efficient use of near-term quantum computers to achieve the potential quantum advantage. However, there is a notorious tradeoff between the expressibility and trainability of the parameter ansatz. We find that in combinatorial optimization problems, since the solutions are described by bit strings, one can trade the expressiveness of the ansatz for high trainability. To be specific, by focusing on the max-cut problem we introduce a simple yet efficient algorithm named Quantum Qubit Rotation Algorithm (QQRA). The quantum circuits are comprised with single-qubit rotation gates implementing on each qubit. The rotation angles of the gates can be trained free of barren plateaus. Thus, the approximate solution of the max-cut problem can be obtained with probability close to 1. To illustrate the effectiveness of QQRA, we compare it with the well known quantum approximate optimization algorithm and the classical Goemans-Williamson algorithm.

In this paper, we address the problem of constructing $C^2$ cubic spline functions on a given arbitrary triangulation $\mathcal{T}$. To this end, we endow every triangle of $\mathcal{T}$ with a Wang-Shi macro-structure. The $C^2$ cubic space on such a refined triangulation has a stable dimension and optimal approximation power. Moreover, any spline function in such space can be locally built on each of the macro-triangles independently via Hermite interpolation. We provide a simplex spline basis for the space of $C^2$ cubics defined on a single macro-triangle which behaves like a Bernstein/B-spline basis over the triangle. The basis functions inherit recurrence relations and differentiation formulas from the simplex spline construction, they form a nonnegative partition of unity, they admit simple conditions for $C^2$ joins across the edges of neighboring triangles, and they enjoy a Marsden-like identity. Also, there is a single control net to facilitate control and early visualization of a spline function over the macro-triangle. Thanks to these properties, the complex geometry of the Wang-Shi macro-structure is transparent to the user. Stable global bases for the full space of $C^2$ cubics on the Wang-Shi refined triangulation $\mathcal{T}$ are deduced from the local simplex spline basis by extending the concept of minimal determining sets.

Distributed Constraint Optimization Problems (DCOPs) are a frequently used framework in which a set of independent agents choose values from their respective discrete domains to maximize their utility. Although this formulation is typically appropriate, there are a number of real-world applications in which the decision variables are continuous-valued and the constraints are represented in functional form. To address this, Continuous Distributed Constraint Optimization Problems (C-DCOPs), an extension of the DCOPs paradigm, have recently grown the interest of the multi-agent systems field. To date, among different approaches, population-based algorithms are shown to be most effective for solving C-DCOPs. Considering the potential of population-based approaches, we propose a new C-DCOPs solver inspired by a well-known population-based algorithm Artificial Bee Colony (ABC). Additionally, we provide a new exploration method that aids in the further improvement of the algorithm's solution quality. Finally, We theoretically prove that our approach is an anytime algorithm and empirically show it produces significantly better results than the state-of-the-art C-DCOPs algorithms.

We present symbolic and numerical methods for computing Poisson brackets on the spaces of measures with positive densities of the plane, the 2-torus, and the 2-sphere. We apply our methods to compute symplectic areas of finite regions for the case of the 2-sphere, including an explicit example for Gaussian measures with positive densities.

We introduce a novel and uniform framework for quantum pixel representations that overarches many of the most popular representations proposed in the recent literature, such as (I)FRQI, (I)NEQR, MCRQI, and (I)NCQI. The proposed QPIXL framework results in more efficient circuit implementations and significantly reduces the gate complexity for all considered quantum pixel representations. Our method only requires a linear number of gates in terms of the number of pixels and does not use ancilla qubits. Furthermore, the circuits only consist of Ry gates and CNOT gates making them practical in the NISQ era. Additionally, we propose a circuit and image compression algorithm that is shown to be highly effective, being able to reduce the necessary gates to prepare an FRQI state for example scientific images by up to 90% without sacrificing image quality. Our algorithms are made publicly available as part of QPIXL++, a Quantum Image Pixel Library.

In this work we consider a class of non-linear eigenvalue problems that admit a spectrum similar to that of a Hamiltonian matrix, in the sense that the spectrum is symmetric with respect to both the real and imaginary axis. More precisely, we present a method to iteratively approximate the eigenvalues of such non-linear eigenvalue problems closest to a given purely real or imaginary shift, while preserving the symmetries of the spectrum. To this end the presented method exploits the equivalence between the considered non-linear eigenvalue problem and the eigenvalue problem associated with a linear but infinite-dimensional operator. To compute the eigenvalues closest to the given shift, we apply a specifically chosen shift-invert transformation to this linear operator and compute the eigenvalues with the largest modulus of the new shifted and inverted operator using an (infinite) Arnoldi procedure. The advantage of the chosen shift-invert transformation is that the spectrum of the transformed operator has a "real skew-Hamiltonian"-like structure. Furthermore, it is proven that the Krylov space constructed by applying this operator, satisfies an orthogonality property in terms of a specifically chosen bilinear form. By taking this property into account in the orthogonalization process, it is ensured that even in the presence of rounding errors, the obtained approximation for, e.g., a simple, purely imaginary eigenvalue is simple and purely imaginary. The presented work can thus be seen as an extension of [V. Mehrmann and D. Watkins, "Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils", SIAM J. Sci. Comput. (22.6), 2001], to the considered class of non-linear eigenvalue problems. Although the presented method is initially defined on function spaces, it can be implemented using finite dimensional linear algebra operations.

Potts models, which can be used to analyze dependent observations on a lattice, have seen widespread application in a variety of areas, including statistical mechanics, neuroscience, and quantum computing. To address the intractability of Potts likelihoods for large spatial fields, we propose fast ordered conditional approximations that enable rapid inference for observed and hidden Potts models. Our methods can be used to directly obtain samples from the approximate joint distribution of an entire Potts field. The computational complexity of our approximation methods is linear in the number of spatial locations; in addition, some of the necessary computations are naturally parallel. We illustrate the advantages of our approach using simulated data and a satellite image.

Optimal $k$-thresholding algorithms are a class of sparse signal recovery algorithms that overcome the shortcomings of traditional hard thresholding algorithms caused by the oscillation of the residual function. In this paper, we provide a novel theoretical analysis for the data-time tradeoffs of optimal $k$-thresholding algorithms. Both the analysis and numerical results demonstrate that when the number of measurements is small, the algorithms cannot converge; when the number of measurements is suitably large, the number of measurements required for successful recovery has a negative correlation with the number of iterations and the algorithms can achieve linear convergence. Furthermore, the theory presents that the transition point of the number of measurements is on the order of $k \log({en}/{k})$, where $n$ is the dimension of the target signal.

Quantum machine learning is expected to be one of the first potential general-purpose applications of near-term quantum devices. A major recent breakthrough in classical machine learning is the notion of generative adversarial training, where the gradients of a discriminator model are used to train a separate generative model. In this work and a companion paper, we extend adversarial training to the quantum domain and show how to construct generative adversarial networks using quantum circuits. Furthermore, we also show how to compute gradients -- a key element in generative adversarial network training -- using another quantum circuit. We give an example of a simple practical circuit ansatz to parametrize quantum machine learning models and perform a simple numerical experiment to demonstrate that quantum generative adversarial networks can be trained successfully.

北京阿比特科技有限公司