One of the challenges in robotics is to enable robotic units with the reasoning capability that would be robust enough to execute complex tasks in dynamic environments. Recent advances in LLMs have positioned them as go-to tools for simple reasoning tasks, motivating the pioneering work of Liang et al. [35] that uses an LLM to translate natural language commands into low-level static execution plans for robotic units. Using LLMs inside robotics systems brings their generalization to a new level, enabling zero-shot generalization to new tasks. This paper extends this prior work to dynamic environments. We propose InCoRo, a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot. Our system continuously analyzes the state of the environment and provides adapted execution commands, enabling the robot to adjust to changing environmental conditions and correcting for controller errors. Our system does not require any iterative optimization to learn to accomplish a task as it leverages in-context learning with an off-the-shelf LLM model. Through an extensive validation process involving two standardized industrial robotic units -- SCARA and DELTA types -- we contribute knowledge about these robots, not popular in the community, thereby enriching it. We highlight the generalization capabilities of our system and show that (1) in-context learning in combination with the current state-of-the-art LLMs is an effective way to implement a robotic controller; (2) in static environments, InCoRo surpasses the prior art in terms of the success rate; (3) in dynamic environments, we establish new state-of-the-art for the SCARA and DELTA units, respectively. This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.
Vision-based deep learning perception fulfills a paramount role in robotics, facilitating solutions to many challenging scenarios, such as acrobatic maneuvers of autonomous unmanned aerial vehicles (UAVs) and robot-assisted high-precision surgery. Control-oriented end-to-end perception approaches, which directly output control variables for the robot, commonly take advantage of the robot's state estimation as an auxiliary input. When intermediate outputs are estimated and fed to a lower-level controller, i.e. mediated approaches, the robot's state is commonly used as an input only for egocentric tasks, which estimate physical properties of the robot itself. In this work, we propose to apply a similar approach for the first time -- to the best of our knowledge -- to non-egocentric mediated tasks, where the estimated outputs refer to an external subject. We prove how our general methodology improves the regression performance of deep convolutional neural networks (CNNs) on a broad class of non-egocentric 3D pose estimation problems, with minimal computational cost. By analyzing three highly-different use cases, spanning from grasping with a robotic arm to following a human subject with a pocket-sized UAV, our results consistently improve the R\textsuperscript{2} regression metric, up to +0.51, compared to their stateless baselines. Finally, we validate the in-field performance of a closed-loop autonomous cm-scale UAV on the human pose estimation task. Our results show a significant reduction, i.e., 24\% on average, on the mean absolute error of our stateful CNN, compared to a State-of-the-Art stateless counterpart.
The role of a motion planner is pivotal in quadrotor applications, yet existing methods often struggle to adapt to complex environments, limiting their ability to achieve fast, safe, and robust flight. In this letter, we introduce a performance-enhanced quadrotor motion planner designed for autonomous flight in complex environments including dense obstacles, dynamic obstacles, and unknown disturbances. The global planner generates an initial trajectory through kinodynamic path searching and refines it using B-spline trajectory optimization. Subsequently, the local planner takes into account the quadrotor dynamics, estimated disturbance, global reference trajectory, control cost, time cost, and safety constraints to generate real-time control inputs, utilizing the framework of model predictive contouring control. Both simulations and real-world experiments corroborate the heightened robustness, safety, and speed of the proposed motion planner. Additionally, our motion planner achieves flights at more than 6.8 m/s in a challenging and complex racing scenario.
Mastering dexterous robotic manipulation of deformable objects is vital for overcoming the limitations of parallel grippers in real-world applications. Current trajectory optimisation approaches often struggle to solve such tasks due to the large search space and the limited task information available from a cost function. In this work, we propose D-Cubed, a novel trajectory optimisation method using a latent diffusion model (LDM) trained from a task-agnostic play dataset to solve dexterous deformable object manipulation tasks. D-Cubed learns a skill-latent space that encodes short-horizon actions in the play dataset using a VAE and trains a LDM to compose the skill latents into a skill trajectory, representing a long-horizon action trajectory in the dataset. To optimise a trajectory for a target task, we introduce a novel gradient-free guided sampling method that employs the Cross-Entropy method within the reverse diffusion process. In particular, D-Cubed samples a small number of noisy skill trajectories using the LDM for exploration and evaluates the trajectories in simulation. Then, D-Cubed selects the trajectory with the lowest cost for the subsequent reverse process. This effectively explores promising solution areas and optimises the sampled trajectories towards a target task throughout the reverse diffusion process. Through empirical evaluation on a public benchmark of dexterous deformable object manipulation tasks, we demonstrate that D-Cubed outperforms traditional trajectory optimisation and competitive baseline approaches by a significant margin. We further demonstrate that trajectories found by D-Cubed readily transfer to a real-world LEAP hand on a folding task.
The acquisition of large-scale, high-quality data is a resource-intensive and time-consuming endeavor. Compared to conventional Data Augmentation (DA) techniques (e.g. cropping and rotation), exploiting prevailing diffusion models for data generation has received scant attention in classification tasks. Existing generative DA methods either inadequately bridge the domain gap between real-world and synthesized images, or inherently suffer from a lack of diversity. To solve these issues, this paper proposes a new classification-oriented framework DreamDA, which enables data synthesis and label generation by way of diffusion models. DreamDA generates diverse samples that adhere to the original data distribution by considering training images in the original data as seeds and perturbing their reverse diffusion process. In addition, since the labels of the generated data may not align with the labels of their corresponding seed images, we introduce a self-training paradigm for generating pseudo labels and training classifiers using the synthesized data. Extensive experiments across four tasks and five datasets demonstrate consistent improvements over strong baselines, revealing the efficacy of DreamDA in synthesizing high-quality and diverse images with accurate labels. Our code will be available at //github.com/yunxiangfu2001/DreamDA.
3D reconstruction is a fundamental task in robotics that gained attention due to its major impact in a wide variety of practical settings, including agriculture, underwater, and urban environments. This task can be carried out via view planning (VP), which aims to optimally place a certain number of cameras in positions that maximize the visual information, improving the resulting 3D reconstruction. Nonetheless, in most real-world settings, existing environmental noise can significantly affect the performance of 3D reconstruction. To that end, this work advocates a novel geometric-based reconstruction quality function for VP, that accounts for the existing noise of the environment, without requiring its closed-form expression. With no analytic expression of the objective function, this work puts forth an adaptive Bayesian optimization algorithm for accurate 3D reconstruction in the presence of noise. Numerical tests on noisy agricultural environments showcase the merits of the proposed approach for 3D reconstruction with even a small number of available cameras.
Graphs are used widely to model complex systems, and detecting anomalies in a graph is an important task in the analysis of complex systems. Graph anomalies are patterns in a graph that do not conform to normal patterns expected of the attributes and/or structures of the graph. In recent years, graph neural networks (GNNs) have been studied extensively and have successfully performed difficult machine learning tasks in node classification, link prediction, and graph classification thanks to the highly expressive capability via message passing in effectively learning graph representations. To solve the graph anomaly detection problem, GNN-based methods leverage information about the graph attributes (or features) and/or structures to learn to score anomalies appropriately. In this survey, we review the recent advances made in detecting graph anomalies using GNN models. Specifically, we summarize GNN-based methods according to the graph type (i.e., static and dynamic), the anomaly type (i.e., node, edge, subgraph, and whole graph), and the network architecture (e.g., graph autoencoder, graph convolutional network). To the best of our knowledge, this survey is the first comprehensive review of graph anomaly detection methods based on GNNs.
The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.