This paper presents the vision of multi-band communication networks (MBN) in 6G, where optical and TeraHertz (THz) transmissions will coexist with the conventional radio frequency (RF) spectrum. This paper will first pin-point the fundamental challenges in MBN architectures at the PHYsical (PHY) and Medium Access (MAC) layer, such as unique channel propagation and estimation issues, user offloading and resource allocation, multi-band transceiver design and antenna systems, mobility and handoff management, backhauling, etc. We then perform a quantitative performance assessment of the two fundamental MBN architectures, i.e., {stand-alone MBN} and {integrated MBN} considering critical factors like achievable rate, and capital/operational deployment cost. {Our results show that stand-alone deployment is prone to higher capital and operational expenses for a predefined data rate requirement. Stand-alone deployment, however, offers flexibility and enables controlling the number of access points in different transmission bands.} In addition, we propose a molecular absorption-aware user offloading metric for MBNs and demonstrate its performance gains over conventional user offloading schemes. Finally, open research directions are presented.
Recently, transformers are trending as replacements for CNNs in vision tasks, including compression. This trend compels us to question the inherent limitations of CNNs compared to transformers and to explore if CNNs can be enhanced to achieve the same or even better performance than transformers. We want to design a pure CNN based model for compression as most devices are optimized for CNNs well. In our analysis, we find that the key strengths of transformers lie in their dynamic weights and large receptive fields. To enable CNNs with such properties, we propose a novel transform module with large receptive filed learning and self-conditioned adaptability for learned image compression, named SLIC. Specifically, we enlarge the receptive field of depth-wise convolution with suitable complexity and generate the weights according to given conditions. In addition, we also investigate the self-conditioned factor for channels. To prove the effectiveness of our proposed transform module, we equip it with existing entropy models ChARM, SCCTX, and SWAtten and we obtain models SLIC-ChARM, SLIC-SCCTX, and SLIC-SWAtten. Extensive experiments demonstrate our SLIC-ChARM, SLIC-SCCTX, and SLIC-SWAtten have significant improvements over corresponding baselines and achieve SOTA performances with suitable complexity on 5 test datasets (Kodak, Tecnick, CLIC 20, CLIC 21, JPEGAI). Code will be available at //github.com/JiangWeibeta/SLIC.
We consider a robust beamforming problem where large amount of downlink (DL) channel state information (CSI) data available at a multiple antenna access point (AP) is used to improve the link quality to a user equipment (UE) for beyond-5G and 6G applications such as environment-specific initial access (IA) or wireless power transfer (WPT). As the DL CSI available at the current instant may be imperfect or outdated, we propose a novel scheme which utilizes the (unknown) correlation between the antenna domain and physical domain to localize the possible future UE positions from the historical CSI database. Then, we develop a codebook design procedure to maximize the minimum sum beamforming gain to that localized CSI neighborhood. We also incorporate a UE specific parameter to enlarge the neighborhood to robustify the link further. We adopt an indoor channel model to demonstrate the performance of our solution, and benchmark against a usually optimal (but now sub-optimal due to outdated CSI) maximum ratio transmission (MRT) and a subspace based method.We numerically show that our algorithm outperforms the other methods by a large margin. This shows that customized environment-specific solutions are important to solve many future wireless applications, and we have paved the way to develop further data-driven approaches.
Recently emerged Vision-and-Language Navigation (VLN) tasks have drawn significant attention in both computer vision and natural language processing communities. Existing VLN tasks are built for agents that navigate on the ground, either indoors or outdoors. However, many tasks require intelligent agents to carry out in the sky, such as UAV-based goods delivery, traffic/security patrol, and scenery tour, to name a few. Navigating in the sky is more complicated than on the ground because agents need to consider the flying height and more complex spatial relationship reasoning. To fill this gap and facilitate research in this field, we propose a new task named AerialVLN, which is UAV-based and towards outdoor environments. We develop a 3D simulator rendered by near-realistic pictures of 25 city-level scenarios. Our simulator supports continuous navigation, environment extension and configuration. We also proposed an extended baseline model based on the widely-used cross-modal-alignment (CMA) navigation methods. We find that there is still a significant gap between the baseline model and human performance, which suggests AerialVLN is a new challenging task. Dataset and code is available at //github.com/AirVLN/AirVLN.
Recent years have seen significant advancements in multi-modal knowledge graph completion (MMKGC). MMKGC enhances knowledge graph completion (KGC) by integrating multi-modal entity information, thereby facilitating the discovery of unobserved triples in the large-scale knowledge graphs (KGs). Nevertheless, existing methods emphasize the design of elegant KGC models to facilitate modality interaction, neglecting the real-life problem of missing modalities in KGs. The missing modality information impedes modal interaction, consequently undermining the model's performance. In this paper, we propose a modality adversarial and contrastive framework (MACO) to solve the modality-missing problem in MMKGC. MACO trains a generator and discriminator adversarially to generate missing modality features that can be incorporated into the MMKGC model. Meanwhile, we design a cross-modal contrastive loss to improve the performance of the generator. Experiments on public benchmarks with further explorations demonstrate that MACO could achieve state-of-the-art results and serve as a versatile framework to bolster various MMKGC models. Our code and benchmark data are available at //github.com/zjukg/MACO.
This paper explores the connections between optimal transport and variational inference, with a focus on forward and reverse time stochastic differential equations and Girsanov transformations.We present a principled and systematic framework for sampling and generative modelling centred around divergences on path space. Our work culminates in the development of a novel score-based annealed flow technique (with connections to Jarzynski and Crooks identities from statistical physics) and a regularised iterative proportional fitting (IPF)-type objective, departing from the sequential nature of standard IPF. Through a series of generative modelling examples and a double-well-based rare event task, we showcase the potential of the proposed methods.
Self-supervision has been widely explored as a means of addressing the lack of inductive biases in vision transformer architectures, which limits generalisation when networks are trained on small datasets. This is crucial in the context of cortical imaging, where phenotypes are complex and heterogeneous, but the available datasets are limited in size. This paper builds upon recent advancements in translating vision transformers to surface meshes and investigates the potential of Masked AutoEncoder (MAE) self-supervision for cortical surface learning. By reconstructing surface data from a masked version of the input, the proposed method effectively models cortical structure to learn strong representations that translate to improved performance in downstream tasks. We evaluate our approach on cortical phenotype regression using the developing Human Connectome Project (dHCP) and demonstrate that pre-training leads to a 26\% improvement in performance, with an 80\% faster convergence, compared to models trained from scratch. Furthermore, we establish that pre-training vision transformer models on large datasets, such as the UK Biobank (UKB), enables the acquisition of robust representations for finetuning in low-data scenarios. Our code and pre-trained models are publicly available at \url{//github.com/metrics-lab/surface-vision-transformers}.
In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and(or) rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors, including the IMU or camera intrinsics and the IMU-IMU(or camera) spatiotemporal extrinsics as well as the image readout time of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with intrinsics-termed ACI3-to preintegrate IMU measurements, which is leveraged to fuse auxiliary IMUs and(or) gyroscopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the necessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of MVIS, we prove that the standard four unobservable directions remain - no matter how many inertial sensors are used, and also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics. In addition to the extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art calibration method such as Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with improved convergence and repeatability, which is open sourced to better benefit the community.
Graph neural networks (GNNs) have emerged as a series of competent graph learning methods for diverse real-world scenarios, ranging from daily applications like recommendation systems and question answering to cutting-edge technologies such as drug discovery in life sciences and n-body simulation in astrophysics. However, task performance is not the only requirement for GNNs. Performance-oriented GNNs have exhibited potential adverse effects like vulnerability to adversarial attacks, unexplainable discrimination against disadvantaged groups, or excessive resource consumption in edge computing environments. To avoid these unintentional harms, it is necessary to build competent GNNs characterised by trustworthiness. To this end, we propose a comprehensive roadmap to build trustworthy GNNs from the view of the various computing technologies involved. In this survey, we introduce basic concepts and comprehensively summarise existing efforts for trustworthy GNNs from six aspects, including robustness, explainability, privacy, fairness, accountability, and environmental well-being. Additionally, we highlight the intricate cross-aspect relations between the above six aspects of trustworthy GNNs. Finally, we present a thorough overview of trending directions for facilitating the research and industrialisation of trustworthy GNNs.
Hierarchical structures are popular in recent vision transformers, however, they require sophisticated designs and massive datasets to work well. In this paper, we explore the idea of nesting basic local transformers on non-overlapping image blocks and aggregating them in a hierarchical way. We find that the block aggregation function plays a critical role in enabling cross-block non-local information communication. This observation leads us to design a simplified architecture that requires minor code changes upon the original vision transformer. The benefits of the proposed judiciously-selected design are threefold: (1) NesT converges faster and requires much less training data to achieve good generalization on both ImageNet and small datasets like CIFAR; (2) when extending our key ideas to image generation, NesT leads to a strong decoder that is 8$\times$ faster than previous transformer-based generators; and (3) we show that decoupling the feature learning and abstraction processes via this nested hierarchy in our design enables constructing a novel method (named GradCAT) for visually interpreting the learned model. Source code is available //github.com/google-research/nested-transformer.
Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers can not see a panorama of the graph neural networks. This survey aims to overcome this limitation, and provide a comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 400 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the facing challenges. It is expected that more and more scholars can understand and exploit the graph neural networks, and use them in their research community.