Understanding the relationship between the composition of a research team and the potential impact of their research papers is crucial as it can steer the development of new science policies for improving the research enterprise. Numerous studies assess how the characteristics and diversity of research teams can influence their performance across several dimensions: ethnicity, internationality, size, and others. In this paper, we explore the impact of diversity in terms of the authors' expertise. To this purpose, we retrieved 114K papers in the field of Computer Science and analysed how the diversity of research fields within a research team relates to the number of citations their papers received in the upcoming 5 years. The results show that two different metrics we defined, reflecting the diversity of expertise, are significantly associated with the number of citations. This suggests that, at least in Computer Science, diversity of expertise is key to scientific impact.
Bayesian classifiers perform well when each of the features is completely independent of the other which is not always valid in real world application. The aim of this study is to implement and compare the performances of each variant of Bayesian classifier (Multinomial, Bernoulli, and Gaussian) on anomaly detection in network intrusion, and to investigate whether there is any association between each variant assumption and their performance. Our investigation showed that each variant of Bayesian algorithm blindly follows its assumption regardless of feature property, and that the assumption is the single most important factor that influences their accuracy. Experimental results show that Bernoulli has accuracy of 69.9% test (71% train), Multinomial has accuracy of 31.2% test (31.2% train), while Gaussian has accuracy of 81.69% test (82.84% train). Going deeper, we investigated and found that each Naive Bayes variants performances and accuracy is largely due to each classifier assumption, Gaussian classifier performed best on anomaly detection due to its assumption that features follow normal distributions which are continuous, while multinomial classifier have a dismal performance as it simply assumes discreet and multinomial distribution.
The generalization performance of deep neural networks with regard to the optimization algorithm is one of the major concerns in machine learning. This performance can be affected by various factors. In this paper, we theoretically prove that the Lipschitz constant of a loss function is an important factor to diminish the generalization error of the output model obtained by Adam or AdamW. The results can be used as a guideline for choosing the loss function when the optimization algorithm is Adam or AdamW. In addition, to evaluate the theoretical bound in a practical setting, we choose the human age estimation problem in computer vision. For assessing the generalization better, the training and test datasets are drawn from different distributions. Our experimental evaluation shows that the loss function with a lower Lipschitz constant and maximum value improves the generalization of the model trained by Adam or AdamW.
This study's first purpose is to provide quantitative evidence that would incentivize researchers to instead use the more robust method of nested cross-validation. The second purpose is to present methods and MATLAB codes for doing power analysis for ML-based analysis during the design of a study. Monte Carlo simulations were used to quantify the interactions between the employed cross-validation method, the discriminative power of features, the dimensionality of the feature space, and the dimensionality of the model. Four different cross-validations (single holdout, 10-fold, train-validation-test, and nested 10-fold) were compared based on the statistical power and statistical confidence of the ML models. Distributions of the null and alternative hypotheses were used to determine the minimum required sample size for obtaining a statistically significant outcome ({\alpha}=0.05, 1-\b{eta}=0.8). Statistical confidence of the model was defined as the probability of correct features being selected and hence being included in the final model. Our analysis showed that the model generated based on the single holdout method had very low statistical power and statistical confidence and that it significantly overestimated the accuracy. Conversely, the nested 10-fold cross-validation resulted in the highest statistical confidence and the highest statistical power, while providing an unbiased estimate of the accuracy. The required sample size with a single holdout could be 50% higher than what would be needed if nested cross-validation were used. Confidence in the model based on nested cross-validation was as much as four times higher than the confidence in the single holdout-based model. A computational model, MATLAB codes, and lookup tables are provided to assist researchers with estimating the sample size during the design of their future studies.
After the inception of emotion recognition or affective computing, it has increasingly become an active research topic due to its broad applications. Over the past couple of decades, emotion recognition models have gradually migrated from statistically shallow models to neural network-based deep models, which can significantly boost the performance of emotion recognition models and consistently achieve the best results on different benchmarks. Therefore, in recent years, deep models have always been considered the first option for emotion recognition. However, the debut of large language models (LLMs), such as ChatGPT, has remarkably astonished the world due to their emerged capabilities of zero/few-shot learning, in-context learning, chain-of-thought, and others that are never shown in previous deep models. In the present paper, we comprehensively investigate how the LLMs perform in emotion recognition in terms of diverse aspects, including in-context learning, few-short learning, accuracy, generalisation, and explanation. Moreover, we offer some insights and pose other potential challenges, hoping to ignite broader discussions about enhancing emotion recognition in the new era of advanced and generalised large models.
Intuitive physics is pivotal for human understanding of the physical world, enabling prediction and interpretation of events even in infancy. Nonetheless, replicating this level of intuitive physics in artificial intelligence (AI) remains a formidable challenge. This study introduces X-VoE, a comprehensive benchmark dataset, to assess AI agents' grasp of intuitive physics. Built on the developmental psychology-rooted Violation of Expectation (VoE) paradigm, X-VoE establishes a higher bar for the explanatory capacities of intuitive physics models. Each VoE scenario within X-VoE encompasses three distinct settings, probing models' comprehension of events and their underlying explanations. Beyond model evaluation, we present an explanation-based learning system that captures physics dynamics and infers occluded object states solely from visual sequences, without explicit occlusion labels. Experimental outcomes highlight our model's alignment with human commonsense when tested against X-VoE. A remarkable feature is our model's ability to visually expound VoE events by reconstructing concealed scenes. Concluding, we discuss the findings' implications and outline future research directions. Through X-VoE, we catalyze the advancement of AI endowed with human-like intuitive physics capabilities.
In the past, the dichotomy between homophily and heterophily has inspired research contributions toward a better understanding of Deep Graph Networks' inductive bias. In particular, it was believed that homophily strongly correlates with better node classification predictions of message-passing methods. More recently, however, researchers pointed out that such dichotomy is too simplistic as we can construct node classification tasks where graphs are completely heterophilic but the performances remain high. Most of these works have also proposed new quantitative metrics to understand when a graph structure is useful, which implicitly or explicitly assume the correlation between node features and target labels. Our work empirically investigates what happens when this strong assumption does not hold, by formalising two generative processes for node classification tasks that allow us to build and study ad-hoc problems. To quantitatively measure the influence of the node features on the target labels, we also use a metric we call Feature Informativeness. We construct six synthetic tasks and evaluate the performance of six models, including structure-agnostic ones. Our findings reveal that previously defined metrics are not adequate when we relax the above assumption. Our contribution to the workshop aims at presenting novel research findings that could help advance our understanding of the field.
Phase information has a significant impact on speech perceptual quality and intelligibility. However, existing speech enhancement methods encounter limitations in explicit phase estimation due to the non-structural nature and wrapping characteristics of the phase, leading to a bottleneck in enhanced speech quality. To overcome the above issue, in this paper, we proposed MP-SENet, a novel Speech Enhancement Network which explicitly enhances Magnitude and Phase spectra in parallel. The proposed MP-SENet adopts a codec architecture in which the encoder and decoder are bridged by time-frequency Transformers along both time and frequency dimensions. The encoder aims to encode time-frequency representations derived from the input distorted magnitude and phase spectra. The decoder comprises dual-stream magnitude and phase decoders, directly enhancing magnitude and wrapped phase spectra by incorporating a magnitude estimation architecture and a phase parallel estimation architecture, respectively. To train the MP-SENet model effectively, we define multi-level loss functions, including mean square error and perceptual metric loss of magnitude spectra, anti-wrapping loss of phase spectra, as well as mean square error and consistency loss of short-time complex spectra. Experimental results demonstrate that our proposed MP-SENet excels in high-quality speech enhancement across multiple tasks, including speech denoising, dereverberation, and bandwidth extension. Compared to existing phase-aware speech enhancement methods, it successfully avoids the bidirectional compensation effect between the magnitude and phase, leading to a better harmonic restoration. Notably, for the speech denoising task, the MP-SENet yields a state-of-the-art performance with a PESQ of 3.60 on the public VoiceBank+DEMAND dataset.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Current deep learning research is dominated by benchmark evaluation. A method is regarded as favorable if it empirically performs well on the dedicated test set. This mentality is seamlessly reflected in the resurfacing area of continual learning, where consecutively arriving sets of benchmark data are investigated. The core challenge is framed as protecting previously acquired representations from being catastrophically forgotten due to the iterative parameter updates. However, comparison of individual methods is nevertheless treated in isolation from real world application and typically judged by monitoring accumulated test set performance. The closed world assumption remains predominant. It is assumed that during deployment a model is guaranteed to encounter data that stems from the same distribution as used for training. This poses a massive challenge as neural networks are well known to provide overconfident false predictions on unknown instances and break down in the face of corrupted data. In this work we argue that notable lessons from open set recognition, the identification of statistically deviating data outside of the observed dataset, and the adjacent field of active learning, where data is incrementally queried such that the expected performance gain is maximized, are frequently overlooked in the deep learning era. Based on these forgotten lessons, we propose a consolidated view to bridge continual learning, active learning and open set recognition in deep neural networks. Our results show that this not only benefits each individual paradigm, but highlights the natural synergies in a common framework. We empirically demonstrate improvements when alleviating catastrophic forgetting, querying data in active learning, selecting task orders, while exhibiting robust open world application where previously proposed methods fail.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.