Current end-to-end machine reading and question answering (Q\&A) models are primarily based on recurrent neural networks (RNNs) with attention. Despite their success, these models are often slow for both training and inference due to the sequential nature of RNNs. We propose a new Q\&A architecture called QANet, which does not require recurrent networks: Its encoder consists exclusively of convolution and self-attention, where convolution models local interactions and self-attention models global interactions. On the SQuAD dataset, our model is 3x to 13x faster in training and 4x to 9x faster in inference, while achieving equivalent accuracy to recurrent models. The speed-up gain allows us to train the model with much more data. We hence combine our model with data generated by backtranslation from a neural machine translation model. On the SQuAD dataset, our single model, trained with augmented data, achieves 84.6 F1 score on the test set, which is significantly better than the best published F1 score of 81.8.
While graph kernels (GKs) are easy to train and enjoy provable theoretical guarantees, their practical performances are limited by their expressive power, as the kernel function often depends on hand-crafted combinatorial features of graphs. Compared to graph kernels, graph neural networks (GNNs) usually achieve better practical performance, as GNNs use multi-layer architectures and non-linear activation functions to extract high-order information of graphs as features. However, due to the large number of hyper-parameters and the non-convex nature of the training procedure, GNNs are harder to train. Theoretical guarantees of GNNs are also not well-understood. Furthermore, the expressive power of GNNs scales with the number of parameters, and thus it is hard to exploit the full power of GNNs when computing resources are limited. The current paper presents a new class of graph kernels, Graph Neural Tangent Kernels (GNTKs), which correspond to infinitely wide multi-layer GNNs trained by gradient descent. GNTKs enjoy the full expressive power of GNNs and inherit advantages of GKs. Theoretically, we show GNTKs provably learn a class of smooth functions on graphs. Empirically, we test GNTKs on graph classification datasets and show they achieve strong performance.
Self-attention network (SAN) has recently attracted increasing interest due to its fully parallelized computation and flexibility in modeling dependencies. It can be further enhanced with multi-headed attention mechanism by allowing the model to jointly attend to information from different representation subspaces at different positions (Vaswani et al., 2017). In this work, we propose a novel convolutional self-attention network (CSAN), which offers SAN the abilities to 1) capture neighboring dependencies, and 2) model the interaction between multiple attention heads. Experimental results on WMT14 English-to-German translation task demonstrate that the proposed approach outperforms both the strong Transformer baseline and other existing works on enhancing the locality of SAN. Comparing with previous work, our model does not introduce any new parameters.
Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.
Machine reading comprehension with unanswerable questions aims to abstain from answering when no answer can be inferred. In addition to extract answers, previous works usually predict an additional "no-answer" probability to detect unanswerable cases. However, they fail to validate the answerability of the question by verifying the legitimacy of the predicted answer. To address this problem, we propose a novel read-then-verify system, which not only utilizes a neural reader to extract candidate answers and produce no-answer probabilities, but also leverages an answer verifier to decide whether the predicted answer is entailed by the input snippets. Moreover, we introduce two auxiliary losses to help the reader better handle answer extraction as well as no-answer detection, and investigate three different architectures for the answer verifier. Our experiments on the SQuAD 2.0 dataset show that our system achieves a score of 74.2 F1 on the test set, achieving state-of-the-art results at the time of submission (Aug. 28th, 2018).
Machine reading comprehension (MRC) requires reasoning about both the knowledge involved in a document and knowledge about the world. However, existing datasets are typically dominated by questions that can be well solved by context matching, which fail to test this capability. To encourage the progress on knowledge-based reasoning in MRC, we present knowledge-based MRC in this paper, and build a new dataset consisting of 40,047 question-answer pairs. The annotation of this dataset is designed so that successfully answering the questions requires understanding and the knowledge involved in a document. We implement a framework consisting of both a question answering model and a question generation model, both of which take the knowledge extracted from the document as well as relevant facts from an external knowledge base such as Freebase/ProBase/Reverb/NELL. Results show that incorporating side information from external KB improves the accuracy of the baseline question answer system. We compare it with a standard MRC model BiDAF, and also provide the difficulty of the dataset and lay out remaining challenges.
Multi-hop reading comprehension focuses on one type of factoid question, where a system needs to properly integrate multiple pieces of evidence to correctly answer a question. Previous work approximates global evidence with local coreference information, encoding coreference chains with DAG-styled GRU layers within a gated-attention reader. However, coreference is limited in providing information for rich inference. We introduce a new method for better connecting global evidence, which forms more complex graphs compared to DAGs. To perform evidence integration on our graphs, we investigate two recent graph neural networks, namely graph convolutional network (GCN) and graph recurrent network (GRN). Experiments on two standard datasets show that richer global information leads to better answers. Our method performs better than all published results on these datasets.
In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.
We propose an architecture for VQA which utilizes recurrent layers to generate visual and textual attention. The memory characteristic of the proposed recurrent attention units offers a rich joint embedding of visual and textual features and enables the model to reason relations between several parts of the image and question. Our single model outperforms the first place winner on the VQA 1.0 dataset, performs within margin to the current state-of-the-art ensemble model. We also experiment with replacing attention mechanisms in other state-of-the-art models with our implementation and show increased accuracy. In both cases, our recurrent attention mechanism improves performance in tasks requiring sequential or relational reasoning on the VQA dataset.
Neural network models recently proposed for question answering (QA) primarily focus on capturing the passage-question relation. However, they have minimal capability to link relevant facts distributed across multiple sentences which is crucial in achieving deeper understanding, such as performing multi-sentence reasoning, co-reference resolution, etc. They also do not explicitly focus on the question and answer type which often plays a critical role in QA. In this paper, we propose a novel end-to-end question-focused multi-factor attention network for answer extraction. Multi-factor attentive encoding using tensor-based transformation aggregates meaningful facts even when they are located in multiple sentences. To implicitly infer the answer type, we also propose a max-attentional question aggregation mechanism to encode a question vector based on the important words in a question. During prediction, we incorporate sequence-level encoding of the first wh-word and its immediately following word as an additional source of question type information. Our proposed model achieves significant improvements over the best prior state-of-the-art results on three large-scale challenging QA datasets, namely NewsQA, TriviaQA, and SearchQA.
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data.