亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Stochastic sampling techniques are ubiquitous in real-time rendering, where performance constraints force the use of low sample counts, leading to noisy intermediate results. To remove this noise, the post-processing step of temporal and spatial denoising is an integral part of the real-time graphics pipeline. The main insight presented in this paper is that we can optimize the samples used in stochastic sampling such that the post-processing error is minimized. The core of our method is an analytical loss function which measures post-filtering error for a class of integrands - multidimensional Heaviside functions. These integrands are an approximation of the discontinuous functions commonly found in rendering. Our analysis applies to arbitrary spatial and spatiotemporal filters, scalar and vector sample values, and uniform and non-uniform probability distributions. We show that the spectrum of Monte Carlo noise resulting from our sampling method is adapted to the shape of the filter, resulting in less noisy final images. We demonstrate improvements over state-of-the-art sampling methods in three representative rendering tasks: ambient occlusion, volumetric ray-marching, and color image dithering. Common use noise textures, and noise generation code is available at //github.com/electronicarts/fastnoise.

相關內容

Semantic segmentation is a complex task that relies heavily on large amounts of annotated image data. However, annotating such data can be time-consuming and resource-intensive, especially in the medical domain. Active Learning (AL) is a popular approach that can help to reduce this burden by iteratively selecting images for annotation to improve the model performance. In the case of video data, it is important to consider the model uncertainty and the temporal nature of the sequences when selecting images for annotation. This work proposes a novel AL strategy for surgery video segmentation, COWAL, COrrelation-aWare Active Learning. Our approach involves projecting images into a latent space that has been fine-tuned using contrastive learning and then selecting a fixed number of representative images from local clusters of video frames. We demonstrate the effectiveness of this approach on two video datasets of surgical instruments and three real-world video datasets. The datasets and code will be made publicly available upon receiving necessary approvals.

The joint modeling of multiple longitudinal biomarkers together with a time-to-event outcome is a challenging modeling task of continued scientific interest. In particular, the computational complexity of high dimensional (generalized) mixed effects models often restricts the flexibility of shared parameter joint models, even when the subject-specific marker trajectories follow highly nonlinear courses. We propose a parsimonious multivariate functional principal components representation of the shared random effects. This allows better scalability, as the dimension of the random effects does not directly increase with the number of markers, only with the chosen number of principal component basis functions used in the approximation of the random effects. The functional principal component representation additionally allows to estimate highly flexible subject-specific random trajectories without parametric assumptions. The modeled trajectories can thus be distinctly different for each biomarker. We build on the framework of flexible Bayesian additive joint models implemented in the R-package 'bamlss', which also supports estimation of nonlinear covariate effects via Bayesian P-splines. The flexible yet parsimonious functional principal components basis used in the estimation of the joint model is first estimated in a preliminary step. We validate our approach in a simulation study and illustrate its advantages by analyzing a study on primary biliary cholangitis.

We consider geometry parameter estimation in industrial sawmill fan-beam X-ray tomography. In such industrial settings, scanners do not always allow identification of the location of the source-detector pair, which creates the issue of unknown geometry. This work considers an approach for geometry estimation based on the calibration object. We parametrise the geometry using a set of 5 parameters. To estimate the geometry parameters, we calculate the maximum cross-correlation between a known-sized calibration object image and its filtered backprojection reconstruction and use differential evolution as an optimiser. The approach allows estimating geometry parameters from full-angle measurements as well as from sparse measurements. We show numerically that different sets of parameters can be used for artefact-free reconstruction. We deploy Bayesian inversion with first-order isotropic Cauchy difference priors for reconstruction of synthetic and real sawmill data with a very low number of measurements.

State-of-the-art visual localization methods mostly rely on complex procedures to match local descriptors and 3D point clouds. However, these procedures can incur significant cost in terms of inference, storage, and updates over time. In this study, we propose a direct learning-based approach that utilizes a simple network named D2S to represent local descriptors and their scene coordinates. Our method is characterized by its simplicity and cost-effectiveness. It solely leverages a single RGB image for localization during the testing phase and only requires a lightweight model to encode a complex sparse scene. The proposed D2S employs a combination of a simple loss function and graph attention to selectively focus on robust descriptors while disregarding areas such as clouds, trees, and several dynamic objects. This selective attention enables D2S to effectively perform a binary-semantic classification for sparse descriptors. Additionally, we propose a new outdoor dataset to evaluate the capabilities of visual localization methods in terms of scene generalization and self-updating from unlabeled observations. Our approach outperforms the state-of-the-art CNN-based methods in scene coordinate regression in indoor and outdoor environments. It demonstrates the ability to generalize beyond training data, including scenarios involving transitions from day to night and adapting to domain shifts, even in the absence of the labeled data sources. The source code, trained models, dataset, and demo videos are available at the following link: //thpjp.github.io/d2s

This work is concerned with an inverse scattering problem of determining unknown scatterers from time-dependent acoustic measurements. A novel time-domain direct sampling method is developed to efficiently determine both the locations and shapes of inhomogeneous media. In particular, our approach is very easy to implement since only cheap space-time integrations are involved in the evaluation of the imaging functionals. Based on the Fourier-Laplace transform, we establish an inherent connection between the time-domain and frequency-domain direct sampling method. Moreover, rigorous theoretical justifications and numerical experiments are provided to verify the validity and feasibility of the proposed method.

The field of 'explainable' artificial intelligence (XAI) has produced highly cited methods that seek to make the decisions of complex machine learning (ML) methods 'understandable' to humans, for example by attributing 'importance' scores to input features. Yet, a lack of formal underpinning leaves it unclear as to what conclusions can safely be drawn from the results of a given XAI method and has also so far hindered the theoretical verification and empirical validation of XAI methods. This means that challenging non-linear problems, typically solved by deep neural networks, presently lack appropriate remedies. Here, we craft benchmark datasets for three different non-linear classification scenarios, in which the important class-conditional features are known by design, serving as ground truth explanations. Using novel quantitative metrics, we benchmark the explanation performance of a wide set of XAI methods across three deep learning model architectures. We show that popular XAI methods are often unable to significantly outperform random performance baselines and edge detection methods. Moreover, we demonstrate that explanations derived from different model architectures can be vastly different; thus, prone to misinterpretation even under controlled conditions.

The locations of different mRNA molecules can be revealed by multiplexed in situ RNA detection. By assigning detected mRNA molecules to individual cells, it is possible to identify many different cell types in parallel. This in turn enables investigation of the spatial cellular architecture in tissue, which is crucial for furthering our understanding of biological processes and diseases. However, cell typing typically depends on the segmentation of cell nuclei, which is often done based on images of a DNA stain, such as DAPI. Limiting cell definition to a nuclear stain makes it fundamentally difficult to determine accurate cell borders, and thereby also difficult to assign mRNA molecules to the correct cell. As such, we have developed a computational tool that segments cells solely based on the local composition of mRNA molecules. First, a small neural network is trained to compute attractive and repulsive edges between pairs of mRNA molecules. The signed graph is then partitioned by a mutex watershed into components corresponding to different cells. We evaluated our method on two publicly available datasets and compared it against the current state-of-the-art and older baselines. We conclude that combining neural networks with combinatorial optimization is a promising approach for cell segmentation of in situ transcriptomics data.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.

In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.

北京阿比特科技有限公司