The study investigates the potential of post-OCR models to overcome limitations in OCR models and explores the impact of incorporating glyph embedding on post-OCR correction performance. In this study, we have developed our own post-OCR correction model. The novelty of our approach lies in embedding the OCR output using CharBERT and our unique embedding technique, capturing the visual characteristics of characters. Our findings show that post-OCR correction effectively addresses deficiencies in inferior OCR models, and glyph embedding enables the model to achieve superior results, including the ability to correct individual words.
As the complexity and scale of modern computer networks continue to increase, there has emerged an urgent need for precise traffic analysis, which plays a pivotal role in cutting-edge wireless connectivity technologies. This study focuses on leveraging Machine Learning methodologies to create an advanced network traffic classification system. We introduce a novel data-driven approach that excels in identifying various network service types in real-time, by analyzing patterns within the network traffic. Our method organizes similar kinds of network traffic into distinct categories, referred to as network services, based on latency requirement. Furthermore, it decomposes the network traffic stream into multiple, smaller traffic flows, with each flow uniquely carrying a specific service. Our ML models are trained on a dataset comprised of labeled examples representing different network service types collected on various Wi-Fi network conditions. Upon evaluation, our system demonstrates a remarkable accuracy in distinguishing the network services. These results emphasize the substantial promise of integrating Artificial Intelligence in wireless technologies. Such an approach encourages more efficient energy consumption, enhances Quality of Service assurance, and optimizes the allocation of network resources, thus laying a solid groundwork for the development of advanced intelligent networks.
While research in the field of transformer models has primarily focused on enhancing performance metrics such as accuracy and perplexity, practical applications in industry often necessitate a rigorous consideration of inference latency constraints. Addressing this challenge, we introduce SpeedLimit, a novel Neural Architecture Search (NAS) technique that optimizes accuracy whilst adhering to an upper-bound latency constraint. Our method incorporates 8-bit integer quantization in the search process to outperform the current state-of-the-art technique. Our results underline the feasibility and efficacy of seeking an optimal balance between performance and latency, providing new avenues for deploying state-of-the-art transformer models in latency-sensitive environments.
We investigate the coexistence of massive and critical Internet of Things (IoT) services in the context of the unsourced multiple access (UMA) framework introduced by Polyanskiy (2017), where all users employ a common codebook and the receiver returns an unordered list of decoded codewords. This setup is suitably modified to introduce heterogeneous traffic. Specifically, to model the massive IoT service, a standard message originates independently from each IoT device as in the standard UMA setup. To model the critical IoT service, we assume the generation of alarm messages that are common for all devices. This setup requires a significant redefinition of the error events, i.e., misdetections and false positives. We further assume that the number of active users in each transmission attempt is random and unknown. We derive a random-coding achievability bound on the misdetection and false positive probabilities of both standard and alarm messages on the Gaussian multiple access channel. Using our bound, we demonstrate that orthogonal network slicing enables massive and critical IoT to coexist under the requirement of high energy efficiency. On the contrary, we show that nonorthogonal network slicing is energy inefficient due to the residual interference from the alarm signal when decoding the standard messages.
This study proposes an innovative model-based modular approach (MMA) to dynamically optimize order matching and vehicle relocation in a ride-hailing platform. MMA utilizes a two-layer and modular modeling structure. The upper layer determines the spatial transfer patterns of vehicle flow within the system to maximize the total revenue of the current and future stages. With the guidance provided by the upper layer, the lower layer performs rapid vehicle-to-order matching and vehicle relocation. MMA is interpretable, and equipped with the customized and polynomial-time algorithm, which, as an online order-matching and vehicle-relocation algorithm, can scale past thousands of vehicles. We theoretically prove that the proposed algorithm can achieve the global optimum in stylized networks, while the numerical experiments based on both the toy network and realistic dataset demonstrate that MMA is capable of achieving superior systematic performance compared to batch matching and reinforcement-learning based methods. Moreover, its modular and lightweight modeling structure further enables it to achieve a high level of robustness against demand variation while maintaining a relatively low computational cost.
The problems of Lasso regression and optimal design of experiments share a critical property: their optimal solutions are typically \emph{sparse}, i.e., only a small fraction of the optimal variables are non-zero. Therefore, the identification of the support of an optimal solution reduces the dimensionality of the problem and can yield a substantial simplification of the calculations. It has recently been shown that linear regression with a \emph{squared} $\ell_1$-norm sparsity-inducing penalty is equivalent to an optimal experimental design problem. In this work, we use this equivalence to derive safe screening rules that can be used to discard inessential samples. Compared to previously existing rules, the new tests are much faster to compute, especially for problems involving a parameter space of high dimension, and can be used dynamically within any iterative solver, with negligible computational overhead. Moreover, we show how an existing homotopy algorithm to compute the regularization path of the lasso method can be reparametrized with respect to the squared $\ell_1$-penalty. This allows the computation of a Bayes $c$-optimal design in a finite number of steps and can be several orders of magnitude faster than standard first-order algorithms. The efficiency of the new screening rules and of the homotopy algorithm are demonstrated on different examples based on real data.
Large Language models (LLMs) possess the capability to engage In-context Learning (ICL) by leveraging a few demonstrations pertaining to a new downstream task as conditions. However, this particular learning paradigm suffers from high instability stemming from substantial variances induced by factors such as the input distribution of selected examples, their ordering, and prompt formats. In this work, we demonstrate that even when all these factors are held constant, the random selection of examples still results in high variance. Consequently, we aim to explore the informative ability of data examples by quantifying the Information Gain (IG) obtained in prediction after observing a given example candidate. Then we propose to sample those with maximum IG. Additionally, we identify the presence of template bias, which can lead to unfair evaluations of IG during the sampling process. To mitigate this bias, we introduce Calibration Before Sampling strategy. The experimental results illustrate that our proposed method can yield an average relative improvement of 14.3% across six classification tasks using three LLMs.
Assessing the quality and impact of individual data points is critical for improving model performance and mitigating undesirable biases within the training dataset. Several data valuation algorithms have been proposed to quantify data quality, however, there lacks a systemic and standardized benchmarking system for data valuation. In this paper, we introduce OpenDataVal, an easy-to-use and unified benchmark framework that empowers researchers and practitioners to apply and compare various data valuation algorithms. OpenDataVal provides an integrated environment that includes (i) a diverse collection of image, natural language, and tabular datasets, (ii) implementations of eleven different state-of-the-art data valuation algorithms, and (iii) a prediction model API that can import any models in scikit-learn. Furthermore, we propose four downstream machine learning tasks for evaluating the quality of data values. We perform benchmarking analysis using OpenDataVal, quantifying and comparing the efficacy of state-of-the-art data valuation approaches. We find that no single algorithm performs uniformly best across all tasks, and an appropriate algorithm should be employed for a user's downstream task. OpenDataVal is publicly available at //opendataval.github.io with comprehensive documentation. Furthermore, we provide a leaderboard where researchers can evaluate the effectiveness of their own data valuation algorithms.
Distributed optimization methods with random communication skips are gaining increasing attention due to their proven benefits in accelerating communication complexity. Nevertheless, existing research mainly focuses on centralized communication protocols for strongly convex deterministic settings. In this work, we provide a decentralized optimization method called RandCom, which incorporates probabilistic local updates. We analyze the performance of RandCom in stochastic non-convex, convex, and strongly convex settings and demonstrate its ability to asymptotically reduce communication overhead by the probability of communication. Additionally, we prove that RandCom achieves linear speedup as the number of nodes increases. In stochastic strongly convex settings, we further prove that RandCom can achieve linear speedup with network-independent stepsizes. Moreover, we apply RandCom to federated learning and provide positive results concerning the potential for achieving linear speedup and the suitability of the probabilistic local update approach for non-convex settings.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.