亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the rise of deep learning, large datasets and complex models have become common, requiring significant computing power. To address this, data distillation has emerged as a technique to quickly train models with lower memory and time requirements. However, data distillation on text-based datasets hasn't been explored much because of the challenges rising due to its discrete nature. Additionally, existing dataset distillation methods often struggle to generalize to new architectures. In the paper, we propose several data distillation techniques for multilingual text classification datasets using language-model-based learning methods. We conduct experiments to analyze their performance in terms of classification strength, and cross-architecture generalization. Furthermore, we investigate the language-specific fairness of the data summaries generated by these methods. Our approach builds upon existing techniques, enhancing cross-architecture generalization in the text data distillation domain.

相關內容

The past decade has witnessed substantial growth of data-driven speech enhancement (SE) techniques thanks to deep learning. While existing approaches have shown impressive performance in some common datasets, most of them are designed only for a single condition (e.g., single-channel, multi-channel, or a fixed sampling frequency) or only consider a single task (e.g., denoising or dereverberation). Currently, there is no universal SE approach that can effectively handle diverse input conditions with a single model. In this paper, we make the first attempt to investigate this line of research. First, we devise a single SE model that is independent of microphone channels, signal lengths, and sampling frequencies. Second, we design a universal SE benchmark by combining existing public corpora with multiple conditions. Our experiments on a wide range of datasets show that the proposed single model can successfully handle diverse conditions with strong performance.

Video understanding has long suffered from reliance on large labeled datasets, motivating research into zero-shot learning. Recent progress in language modeling presents opportunities to advance zero-shot video analysis, but constructing an effective semantic space relating action classes remains challenging. We address this by introducing a novel dataset, Stories, which contains rich textual descriptions for diverse action classes extracted from WikiHow articles. For each class, we extract multi-sentence narratives detailing the necessary steps, scenes, objects, and verbs that characterize the action. This contextual data enables modeling of nuanced relationships between actions, paving the way for zero-shot transfer. We also propose an approach that harnesses Stories to improve feature generation for training zero-shot classification. Without any target dataset fine-tuning, our method achieves new state-of-the-art on multiple benchmarks, improving top-1 accuracy by up to 6.1%. We believe Stories provides a valuable resource that can catalyze progress in zero-shot action recognition. The textual narratives forge connections between seen and unseen classes, overcoming the bottleneck of labeled data that has long impeded advancements in this exciting domain. The data can be found here: //github.com/kini5gowda/Stories .

In real-world scenarios, the application of reinforcement learning is significantly challenged by complex non-stationarity. Most existing methods attempt to model changes in the environment explicitly, often requiring impractical prior knowledge. In this paper, we propose a new perspective, positing that non-stationarity can propagate and accumulate through complex causal relationships during state transitions, thereby compounding its sophistication and affecting policy learning. We believe that this challenge can be more effectively addressed by tracing the causal origin of non-stationarity. To this end, we introduce the Causal-Origin REPresentation (COREP) algorithm. COREP primarily employs a guided updating mechanism to learn a stable graph representation for states termed as causal-origin representation. By leveraging this representation, the learned policy exhibits impressive resilience to non-stationarity. We supplement our approach with a theoretical analysis grounded in the causal interpretation for non-stationary reinforcement learning, advocating for the validity of the causal-origin representation. Experimental results further demonstrate the superior performance of COREP over existing methods in tackling non-stationarity.

Fair machine learning seeks to mitigate model prediction bias against certain demographic subgroups such as elder and female. Recently, fair representation learning (FRL) trained by deep neural networks has demonstrated superior performance, whereby representations containing no demographic information are inferred from the data and then used as the input to classification or other downstream tasks. Despite the development of FRL methods, their vulnerability under data poisoning attack, a popular protocol to benchmark model robustness under adversarial scenarios, is under-explored. Data poisoning attacks have been developed for classical fair machine learning methods which incorporate fairness constraints into shallow-model classifiers. Nonetheless, these attacks fall short in FRL due to notably different fairness goals and model architectures. This work proposes the first data poisoning framework attacking FRL. We induce the model to output unfair representations that contain as much demographic information as possible by injecting carefully crafted poisoning samples into the training data. This attack entails a prohibitive bilevel optimization, wherefore an effective approximated solution is proposed. A theoretical analysis on the needed number of poisoning samples is derived and sheds light on defending against the attack. Experiments on benchmark fairness datasets and state-of-the-art fair representation learning models demonstrate the superiority of our attack.

Contrastive deep graph clustering (CDGC) utilizes contrastive learning to group nodes into different clusters. Better augmentation techniques benefit the quality of the contrastive samples, thus being one of key factors to improve performance. However, the augmentation samples in existing methods are always predefined by human experiences, and agnostic from the downstream task clustering, thus leading to high human resource costs and poor performance. To this end, we propose an Attribute Graph Clustering method via Learnable Augmentation (\textbf{AGCLA}), which introduces learnable augmentors for high-quality and suitable augmented samples for CDGC. Specifically, we design two learnable augmentors for attribute and structure information, respectively. Besides, two refinement matrices, including the high-confidence pseudo-label matrix and the cross-view sample similarity matrix, are generated to improve the reliability of the learned affinity matrix. During the training procedure, we notice that there exist differences between the optimization goals for training learnable augmentors and contrastive learning networks. In other words, we should both guarantee the consistency of the embeddings as well as the diversity of the augmented samples. Thus, an adversarial learning mechanism is designed in our method. Moreover, a two-stage training strategy is leveraged for the high-confidence refinement matrices. Extensive experimental results demonstrate the effectiveness of AGCLA on six benchmark datasets.

Hashing is a common technique used in data processing, with a strong impact on the time and resources spent on computation. Hashing also affects the applicability of theoretical results that often assume access to (unrealistic) uniform/fully-random hash functions. In this paper, we are concerned with designing hash functions that are practical and come with strong theoretical guarantees on their performance. To this end, we present tornado tabulation hashing, which is simple, fast, and exhibits a certain full, local randomness property that provably makes diverse algorithms perform almost as if (abstract) fully-random hashing was used. For example, this includes classic linear probing, the widely used HyperLogLog algorithm of Flajolet, Fusy, Gandouet, Meunier [AOFA 97] for counting distinct elements, and the one-permutation hashing of Li, Owen, and Zhang [NIPS 12] for large-scale machine learning. We also provide a very efficient solution for the classical problem of obtaining fully-random hashing on a fixed (but unknown to the hash function) set of $n$ keys using $O(n)$ space. As a consequence, we get more efficient implementations of the splitting trick of Dietzfelbinger and Rink [ICALP'09] and the succinct space uniform hashing of Pagh and Pagh [SICOMP'08]. Tornado tabulation hashing is based on a simple method to systematically break dependencies in tabulation-based hashing techniques.

Batch reinforcement learning (RL) defines the task of learning from a fixed batch of data lacking exhaustive exploration. Worst-case optimality algorithms, which calibrate a value-function model class from logged experience and perform some type of pessimistic evaluation under the learned model, have emerged as a promising paradigm for batch RL. However, contemporary works on this stream have commonly overlooked the hierarchical decision-making structure hidden in the optimization landscape. In this paper, we adopt a game-theoretical viewpoint and model the policy learning diagram as a two-player general-sum game with a leader-follower structure. We propose a novel stochastic gradient-based learning algorithm: StackelbergLearner, in which the leader player updates according to the total derivative of its objective instead of the usual individual gradient, and the follower player makes individual updates and ensures transition-consistent pessimistic reasoning. The derived learning dynamic naturally lends StackelbergLearner to a game-theoretic interpretation and provides a convergence guarantee to differentiable Stackelberg equilibria. From a theoretical standpoint, we provide instance-dependent regret bounds with general function approximation, which shows that our algorithm can learn a best-effort policy that is able to compete against any comparator policy that is covered by batch data. Notably, our theoretical regret guarantees only require realizability without any data coverage and strong function approximation conditions, e.g., Bellman closedness, which is in contrast to prior works lacking such guarantees. Through comprehensive experiments, we find that our algorithm consistently performs as well or better as compared to state-of-the-art methods in batch RL benchmark and real-world datasets.

The assumption that data are independent and identically distributed underpins all machine learning. When data are collected sequentially from agent experiences this assumption does not generally hold, as in reinforcement learning. Here, we derive a method that overcomes these limitations by exploiting the statistical mechanics of ergodic processes, which we term maximum diffusion reinforcement learning. By decorrelating agent experiences, our approach provably enables agents to learn continually in single-shot deployments regardless of how they are initialized. Moreover, we prove our approach generalizes well-known maximum entropy techniques, and show that it robustly exceeds state-of-the-art performance across popular benchmarks. Our results at the nexus of physics, learning, and control pave the way towards more transparent and reliable decision-making in reinforcement learning agents, such as locomoting robots and self-driving cars.

The conjoining of dynamical systems and deep learning has become a topic of great interest. In particular, neural differential equations (NDEs) demonstrate that neural networks and differential equation are two sides of the same coin. Traditional parameterised differential equations are a special case. Many popular neural network architectures, such as residual networks and recurrent networks, are discretisations. NDEs are suitable for tackling generative problems, dynamical systems, and time series (particularly in physics, finance, ...) and are thus of interest to both modern machine learning and traditional mathematical modelling. NDEs offer high-capacity function approximation, strong priors on model space, the ability to handle irregular data, memory efficiency, and a wealth of available theory on both sides. This doctoral thesis provides an in-depth survey of the field. Topics include: neural ordinary differential equations (e.g. for hybrid neural/mechanistic modelling of physical systems); neural controlled differential equations (e.g. for learning functions of irregular time series); and neural stochastic differential equations (e.g. to produce generative models capable of representing complex stochastic dynamics, or sampling from complex high-dimensional distributions). Further topics include: numerical methods for NDEs (e.g. reversible differential equations solvers, backpropagation through differential equations, Brownian reconstruction); symbolic regression for dynamical systems (e.g. via regularised evolution); and deep implicit models (e.g. deep equilibrium models, differentiable optimisation). We anticipate this thesis will be of interest to anyone interested in the marriage of deep learning with dynamical systems, and hope it will provide a useful reference for the current state of the art.

Link prediction for knowledge graphs is the task of predicting missing relationships between entities. Previous work on link prediction has focused on shallow, fast models which can scale to large knowledge graphs. However, these models learn less expressive features than deep, multi-layer models -- which potentially limits performance. In this work, we introduce ConvE, a multi-layer convolutional network model for link prediction, and report state-of-the-art results for several established datasets. We also show that the model is highly parameter efficient, yielding the same performance as DistMult and R-GCN with 8x and 17x fewer parameters. Analysis of our model suggests that it is particularly effective at modelling nodes with high indegree -- which are common in highly-connected, complex knowledge graphs such as Freebase and YAGO3. In addition, it has been noted that the WN18 and FB15k datasets suffer from test set leakage, due to inverse relations from the training set being present in the test set -- however, the extent of this issue has so far not been quantified. We find this problem to be severe: a simple rule-based model can achieve state-of-the-art results on both WN18 and FB15k. To ensure that models are evaluated on datasets where simply exploiting inverse relations cannot yield competitive results, we investigate and validate several commonly used datasets -- deriving robust variants where necessary. We then perform experiments on these robust datasets for our own and several previously proposed models, and find that ConvE achieves state-of-the-art Mean Reciprocal Rank across all datasets.

北京阿比特科技有限公司