亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Short video applications have attracted billions of users on the Internet and can satisfy diverse users' fragmented spare time with content-rich and duration-short videos. To achieve fast playback at user side, existing short video systems typically enforce burst transmission of initial segment of each video when being requested for improved quality of user experiences. However, such a way of burst transmissions can cause unexpected large startup delays at user side. This is because users may frequently switch videos when sequentially watching a list of short videos recommended by the server side, which can cause excessive burst transmissions of initial segments of different short videos and thus quickly deplete the network transmission capacity. In this paper, we adopt token bucket to characterize the video transmission path between video server and each user, and accordingly study how to effectively reduce the startup delay of short videos by effectively arranging the viewing order of a video list at the server side. We formulate the optimal video ordering problem for minimizing the maximum video startup delay as a combinatorial optimization problem and prove its NP-hardness. We accordingly propose a Partially Shared Actor Critic reinforcement learning algorithm (PSAC) to learn optimized video ordering strategy. Numerical results based on a real dataset provided by a large-scale short video service provider demonstrate that the proposed PSAC algorithm can significantly reduce the video startup delay compared to baseline algorithms.

相關內容

Many rescue missions demand effective perception and real-time decision making, which highly rely on effective data collection and processing. In this study, we propose a three-layer architecture of emergency caching networks focusing on data collection and reliable transmission, by leveraging efficient perception and edge caching technologies. Based on this architecture, we propose a disaster map collection framework that integrates coded caching technologies. Our framework strategically caches coded fragments of maps across unmanned aerial vehicles (UAVs), fostering collaborative uploading for augmented transmission reliability. Additionally, we establish a comprehensive probability model to assess the effective recovery area of disaster maps. Towards the goal of utility maximization, we propose a deep reinforcement learning (DRL) based algorithm that jointly makes decisions about cooperative UAVs selection, bandwidth allocation and coded caching parameter adjustment, accommodating the real-time map updates in a dynamic disaster situation. Our proposed scheme is more effective than the non-coding caching scheme, as validated by simulation.

As more users turn to video-sharing platforms like YouTube as an information source, they may consume misinformation despite their best efforts. In this work, we investigate ways that users can better assess the credibility of videos by first exploring how users currently determine credibility using existing signals on platforms and then by introducing and evaluating new credibility-based signals. We conducted 12 contextual inquiry interviews with YouTube users, determining that participants used a combination of existing signals, such as the channel name, the production quality, and prior knowledge, to evaluate credibility, yet sometimes stumbled in their efforts to do so. We then developed Viblio, a prototype system that enables YouTube users to view and add citations and related information while watching a video based on our participants' needs. From an evaluation with 12 people, all participants found Viblio to be intuitive and useful in the process of evaluating a video's credibility and could see themselves using Viblio in the future.

Blind or Low-Vision (BLV) users often rely on audio descriptions (AD) to access video content. However, conventional static ADs can leave out detailed information in videos, impose a high mental load, neglect the diverse needs and preferences of BLV users, and lack immersion. To tackle these challenges, we introduce SPICA, an AI-powered system that enables BLV users to interactively explore video content. Informed by prior empirical studies on BLV video consumption, SPICA offers novel interactive mechanisms for supporting temporal navigation of frame captions and spatial exploration of objects within key frames. Leveraging an audio-visual machine learning pipeline, SPICA augments existing ADs by adding interactivity, spatial sound effects, and individual object descriptions without requiring additional human annotation. Through a user study with 14 BLV participants, we evaluated the usability and usefulness of SPICA and explored user behaviors, preferences, and mental models when interacting with augmented ADs.

Recommender systems serve a dual purpose for users: sifting out inappropriate or mismatched information while accurately identifying items that align with their preferences. Numerous recommendation algorithms are designed to provide users with a personalized array of information tailored to their preferences. Nevertheless, excessive personalization can confine users within a "filter bubble". Consequently, achieving the right balance between accuracy and diversity in recommendations is a pressing concern. To address this challenge, exemplified by music recommendation, we introduce the Diversified Weighted Hypergraph music Recommendation algorithm (DWHRec). In the DWHRec algorithm, the initial connections between users and listened tracks are represented by a weighted hypergraph. Simultaneously, associations between artists, albums and tags with tracks are also appended to the hypergraph. To explore users' latent preferences, a hypergraph-based random walk embedding method is applied to the constructed hypergraph. In our investigation, accuracy is gauged by the alignment between the user and the track, whereas the array of recommended track types measures diversity. We rigorously compared DWHRec against seven state-of-the-art recommendation algorithms using two real-world music datasets. The experimental results validate DWHRec as a solution that adeptly harmonizes accuracy and diversity, delivering a more enriched musical experience. Beyond music recommendation, DWHRec can be extended to cater to other scenarios with similar data structures.

Real-time bidding (RTB) systems, which utilize auctions to allocate user impressions to competing advertisers, continue to enjoy success in digital advertising. Assessing the effectiveness of such advertising remains a challenge in research and practice. This paper proposes a new approach to perform causal inference on advertising bought through such mechanisms. Leveraging the economic structure of first- and second-price auctions, we first show that the effects of advertising are identified by the optimal bids. Hence, since these optimal bids are the only objects that need to be recovered, we introduce an adapted Thompson sampling (TS) algorithm to solve a multi-armed bandit problem that succeeds in recovering such bids and, consequently, the effects of advertising while minimizing the costs of experimentation. We derive a regret bound for our algorithm which is order optimal and use data from RTB auctions to show that it outperforms commonly used methods that estimate the effects of advertising.

Video caching can significantly improve backhaul traffic congestion by locally storing the popular content that users frequently request. A privacy-preserving method is desirable to learn how users' demands change over time. As such, this paper proposes a novel resource-aware hierarchical federated learning (RawHFL) solution to predict users' future content requests under the realistic assumptions that content requests are sporadic and users' datasets can only be updated based on the requested content's information. Considering a partial client participation case, we first derive the upper bound of the global gradient norm that depends on the clients' local training rounds and the successful reception of their accumulated gradients over the wireless links. Under delay, energy and radio resource constraints, we then optimize client selection and their local rounds and central processing unit (CPU) frequencies to minimize a weighted utility function that facilitates RawHFL's convergence in an energy-efficient way. Our simulation results show that the proposed solution significantly outperforms the considered baselines in terms of prediction accuracy and total energy expenditure.

Real-time video streaming relies on rate control mechanisms to adapt video bitrate to network capacity while maintaining high utilization and low delay. However, the current video rate controllers, such as Google Congestion Control (GCC), are very slow to respond to network changes, leading to link under-utilization and latency spikes. While recent delay-based congestion control algorithms promise high efficiency and rapid adaptation to variable conditions, low-latency video applications have been unable to adopt these schemes due to the intertwined relationship between video encoders and rate control in current systems. This paper introduces Vidaptive, a new rate control mechanism designed for low-latency video applications. Vidaptive decouples packet transmission decisions from encoder output, injecting ``dummy'' padding traffic as needed to treat video streams akin to backlogged flows controlled by a delay-based congestion controller. Vidaptive then adapts the target bitrate of the encoder based on delay measurements to align the video bitrate with the congestion controller's sending rate. Our evaluations atop Google's implementation of WebRTC show that, across a set of cellular traces, Vidaptive achieves ~1.5x higher video bitrate and 1.4 dB higher SSIM, 1.3 dB higher PSNR, and 40% higher VMAF, and it reduces 95th-percentile frame latency by 2.2 s with a slight 17 ms increase in median frame latency.

Web automation holds the potential to revolutionize how users interact with the digital world, offering unparalleled assistance and simplifying tasks via sophisticated computational methods. Central to this evolution is the web element nomination task, which entails identifying unique elements on webpages. Unfortunately, the development of algorithmic designs for web automation is hampered by the scarcity of comprehensive and realistic datasets that reflect the complexity faced by real-world applications on the Web. To address this, we introduce the Klarna Product Page Dataset, a comprehensive and diverse collection of webpages that surpasses existing datasets in richness and variety. The dataset features 51,701 manually labeled product pages from 8,175 e-commerce websites across eight geographic regions, accompanied by a dataset of rendered page screenshots. To initiate research on the Klarna Product Page Dataset, we empirically benchmark a range of Graph Neural Networks (GNNs) on the web element nomination task. We make three important contributions. First, we found that a simple Convolutional GNN (GCN) outperforms complex state-of-the-art nomination methods. Second, we introduce a training refinement procedure that involves identifying a small number of relevant elements from each page using the aforementioned GCN. These elements are then passed to a large language model for the final nomination. This procedure significantly improves the nomination accuracy by 16.8 percentage points on our challenging dataset, without any need for fine-tuning. Finally, in response to another prevalent challenge in this field - the abundance of training methodologies suitable for element nomination - we introduce the Challenge Nomination Training Procedure, a novel training approach that further boosts nomination accuracy.

Graphical User Interface (GUI) agents are designed to automate complex tasks on digital devices, such as smartphones and desktops. Most existing GUI agents interact with the environment through extracted structured data, which can be notably lengthy (e.g., HTML) and occasionally inaccessible (e.g., on desktops). To alleviate this issue, we propose a novel visual GUI agent -- SeeClick, which only relies on screenshots for task automation. In our preliminary study, we have discovered a key challenge in developing visual GUI agents: GUI grounding -- the capacity to accurately locate screen elements based on instructions. To tackle this challenge, we propose to enhance SeeClick with GUI grounding pre-training and devise a method to automate the curation of GUI grounding data. Along with the efforts above, we have also created ScreenSpot, the first realistic GUI grounding benchmark that encompasses mobile, desktop, and web environments. After pre-training, SeeClick demonstrates significant improvement in ScreenSpot over various baselines. Moreover, comprehensive evaluations on three widely used benchmarks consistently support our finding that advancements in GUI grounding directly correlate with enhanced performance in downstream GUI agent tasks. The model, data and code are available at //github.com/njucckevin/SeeClick.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司