亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Reconfigurable intelligent surfaces (RISs) have become a promising technology to meet the requirements of energy efficiency and scalability in future six-generation (6G) communications. However, a significant challenge in RISs-aided communications is the joint optimization of active and passive beamforming at base stations (BSs) and RISs respectively. Specifically, the main difficulty is attributed to the highly non-convex optimization space of beamforming matrices at both BSs and RISs, as well as the diversity and mobility of communication scenarios. To address this, we present a greenly gradient based meta learning beamforming (GMLB) approach. Unlike traditional deep learning based methods which take channel information directly as input, GMLB feeds the gradient of sum rate into neural networks. Coherently, we design a differential regulator to address the phase shift optimization of RISs. Moreover, we use the meta learning to iteratively optimize the beamforming matrices of BSs and RISs. These techniques make the proposed method to work well without requiring energy-consuming pre-training. Simulations show that GMLB could achieve higher sum rate than that of typical alternating optimization algorithms with the energy consumption by two orders of magnitude less.

相關內容

Artificial general intelligence (AGI) has gained global recognition as a future technology due to the emergence of breakthrough large language models and chatbots such as GPT-4 and ChatGPT, respectively. Compared to conventional AI models, typically designed for a limited range of tasks, demand significant amounts of domain-specific data for training and may not always consider intricate interpersonal dynamics in education. AGI, driven by the recent large pre-trained models, represents a significant leap in the capability of machines to perform tasks that require human-level intelligence, such as reasoning, problem-solving, decision-making, and even understanding human emotions and social interactions. This position paper reviews AGI's key concepts, capabilities, scope, and potential within future education, including achieving future educational goals, designing pedagogy and curriculum, and performing assessments. It highlights that AGI can significantly improve intelligent tutoring systems, educational assessment, and evaluation procedures. AGI systems can adapt to individual student needs, offering tailored learning experiences. They can also provide comprehensive feedback on student performance and dynamically adjust teaching methods based on student progress. The paper emphasizes that AGI's capabilities extend to understanding human emotions and social interactions, which are critical in educational settings. The paper discusses that ethical issues in education with AGI include data bias, fairness, and privacy and emphasizes the need for codes of conduct to ensure responsible AGI use in academic settings like homework, teaching, and recruitment. We also conclude that the development of AGI necessitates interdisciplinary collaborations between educators and AI engineers to advance research and application efforts.

Natural language processing models have experienced a significant upsurge in recent years, with numerous applications being built upon them. Many of these applications require fine-tuning generic base models on customized, proprietary datasets. This fine-tuning data is especially likely to contain personal or sensitive information about individuals, resulting in increased privacy risk. Membership inference attacks are the most commonly employed attack to assess the privacy leakage of a machine learning model. However, limited research is available on the factors that affect the vulnerability of language models to this kind of attack, or on the applicability of different defense strategies in the language domain. We provide the first systematic review of the vulnerability of fine-tuned large language models to membership inference attacks, the various factors that come into play, and the effectiveness of different defense strategies. We find that some training methods provide significantly reduced privacy risk, with the combination of differential privacy and low-rank adaptors achieving the best privacy protection against these attacks.

Creating high-quality materials in computer graphics is a challenging and time-consuming task, which requires great expertise. To simplify this process, we introduce MatFuse, a unified approach that harnesses the generative power of diffusion models for creation and editing of 3D materials. Our method integrates multiple sources of conditioning, including color palettes, sketches, text, and pictures, enhancing creative possibilities and granting fine-grained control over material synthesis. Additionally, MatFuse enables map-level material editing capabilities through latent manipulation by means of a multi-encoder compression model which learns a disentangled latent representation for each map. We demonstrate the effectiveness of MatFuse under multiple conditioning settings and explore the potential of material editing. Finally, we assess the quality of the generated materials both quantitatively in terms of CLIP-IQA and FID scores and qualitatively by conducting a user study. Source code for training MatFuse and supplemental materials are publicly available at //gvecchio.com/matfuse.

The increasing usage of machine learning models in consequential decision-making processes has spurred research into the fairness of these systems. While significant work has been done to study group fairness in the in-processing and post-processing setting, there has been little that theoretically connects these results to the pre-processing domain. This paper proposes that achieving group fairness in downstream models can be formulated as finding the optimal design matrix in which to modify a response variable in a Randomized Response framework. We show that measures of group fairness can be directly controlled for with optimal model utility, proposing a pre-processing algorithm called FairRR that yields excellent downstream model utility and fairness.

In real-world applications, dynamic scenarios require the models to possess the capability to learn new tasks continuously without forgetting the old knowledge. Experience-Replay methods store a subset of the old images for joint training. In the scenario of more strict privacy protection, storing the old images becomes infeasible, which leads to a more severe plasticity-stability dilemma and classifier bias. To meet the above challenges, we propose a new architecture, named continual expansion and absorption transformer~(CEAT). The model can learn the novel knowledge by extending the expanded-fusion layers in parallel with the frozen previous parameters. After the task ends, we losslessly absorb the extended parameters into the backbone to ensure that the number of parameters remains constant. To improve the learning ability of the model, we designed a novel prototype contrastive loss to reduce the overlap between old and new classes in the feature space. Besides, to address the classifier bias towards the new classes, we propose a novel approach to generate the pseudo-features to correct the classifier. We experiment with our methods on three standard Non-Exemplar Class-Incremental Learning~(NECIL) benchmarks. Extensive experiments demonstrate that our model gets a significant improvement compared with the previous works and achieves 5.38%, 5.20%, and 4.92% improvement on CIFAR-100, TinyImageNet, and ImageNet-Subset.

Multi-modal 3D scene understanding has gained considerable attention due to its wide applications in many areas, such as autonomous driving and human-computer interaction. Compared to conventional single-modal 3D understanding, introducing an additional modality not only elevates the richness and precision of scene interpretation but also ensures a more robust and resilient understanding. This becomes especially crucial in varied and challenging environments where solely relying on 3D data might be inadequate. While there has been a surge in the development of multi-modal 3D methods over past three years, especially those integrating multi-camera images (3D+2D) and textual descriptions (3D+language), a comprehensive and in-depth review is notably absent. In this article, we present a systematic survey of recent progress to bridge this gap. We begin by briefly introducing a background that formally defines various 3D multi-modal tasks and summarizes their inherent challenges. After that, we present a novel taxonomy that delivers a thorough categorization of existing methods according to modalities and tasks, exploring their respective strengths and limitations. Furthermore, comparative results of recent approaches on several benchmark datasets, together with insightful analysis, are offered. Finally, we discuss the unresolved issues and provide several potential avenues for future research.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

The development of unmanned aerial vehicles (UAVs) has been gaining momentum in recent years owing to technological advances and a significant reduction in their cost. UAV technology can be used in a wide range of domains, including communication, agriculture, security, and transportation. It may be useful to group the UAVs into clusters/flocks in certain domains, and various challenges associated with UAV usage can be alleviated by clustering. Several computational challenges arise in UAV flock management, which can be solved by using machine learning (ML) methods. In this survey, we describe the basic terms relating to UAVS and modern ML methods, and we provide an overview of related tutorials and surveys. We subsequently consider the different challenges that appear in UAV flocks. For each issue, we survey several machine learning-based methods that have been suggested in the literature to handle the associated challenges. Thereafter, we describe various open issues in which ML can be applied to solve the different challenges of flocks, and we suggest means of using ML methods for this purpose. This comprehensive review may be useful for both researchers and developers in providing a wide view of various aspects of state-of-the-art ML technologies that are applicable to flock management.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

There recently has been a surge of interest in developing a new class of deep learning (DL) architectures that integrate an explicit time dimension as a fundamental building block of learning and representation mechanisms. In turn, many recent results show that topological descriptors of the observed data, encoding information on the shape of the dataset in a topological space at different scales, that is, persistent homology of the data, may contain important complementary information, improving both performance and robustness of DL. As convergence of these two emerging ideas, we propose to enhance DL architectures with the most salient time-conditioned topological information of the data and introduce the concept of zigzag persistence into time-aware graph convolutional networks (GCNs). Zigzag persistence provides a systematic and mathematically rigorous framework to track the most important topological features of the observed data that tend to manifest themselves over time. To integrate the extracted time-conditioned topological descriptors into DL, we develop a new topological summary, zigzag persistence image, and derive its theoretical stability guarantees. We validate the new GCNs with a time-aware zigzag topological layer (Z-GCNETs), in application to traffic forecasting and Ethereum blockchain price prediction. Our results indicate that Z-GCNET outperforms 13 state-of-the-art methods on 4 time series datasets.

北京阿比特科技有限公司