亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Furihata and Matsuo proposed in 2010 an energy-conserving scheme for the Zakharov equations, as an application of the discrete variational derivative method (DVDM). This scheme is distinguished from conventional methods (in particular the one devised by Glassey in 1992) in that the invariants are consistent with respect to time, but it has not been sufficiently studied both theoretically and numerically. In this study, we theoretically prove the solvability under the loosest possible assumptions. We also prove the convergence of this DVDM scheme by improving the argument by Glassey. Furthermore, we perform intensive numerical experiments for comparing the above two schemes. It is found that the DVDM scheme is superior in terms of accuracy, but since it is fully-implicit, the linearly-implicit Glassey scheme is better for practical efficiency. In addition, we proposed a way to choose a solution for the first step that would allow Glassey's scheme to work more efficiently.

相關內容

This paper studies a quantum simulation technique for solving the Fokker-Planck equation. Traditional semi-discretization methods often fail to preserve the underlying Hamiltonian dynamics and may even modify the Hamiltonian structure, particularly when incorporating boundary conditions. We address this challenge by employing the Schrodingerization method-it converts any linear partial and ordinary differential equation with non-Hermitian dynamics into systems of Schrodinger-type equations. We explore the application in two distinct forms of the Fokker-Planck equation. For the conservation form, we show that the semi-discretization-based Schrodingerization is preferable, especially when dealing with non-periodic boundary conditions. Additionally, we analyze the Schrodingerization approach for unstable systems that possess positive eigenvalues in the real part of the coefficient matrix or differential operator. Our analysis reveals that the direct use of Schrodingerization has the same effect as a stabilization procedure. For the heat equation form, we propose a quantum simulation procedure based on the time-splitting technique. We discuss the relationship between operator splitting in the Schrodingerization method and its application directly to the original problem, illustrating how the Schrodingerization method accurately reproduces the time-splitting solutions at each step. Furthermore, we explore finite difference discretizations of the heat equation form using shift operators. Utilizing Fourier bases, we diagonalize the shift operators, enabling efficient simulation in the frequency space. Providing additional guidance on implementing the diagonal unitary operators, we conduct a comparative analysis between diagonalizations in the Bell and the Fourier bases, and show that the former generally exhibits greater efficiency than the latter.

A novel strategy is proposed for the coupling of field and circuit equations when modeling power devices in the low-frequency regime. The resulting systems of differential-algebraic equations have a particular geometric structure which explicitly encodes the energy storage, dissipation, and transfer mechanisms. This implies a power balance on the continuous level which can be preserved under appropriate discretization in space and time. The models and main results are presented in detail for linear constitutive models, but the extension to nonlinear elements and more general coupling mechanisms is possible. The theoretical findings are demonstrated by numerical results.

This paper introduces a second-order method for solving general elliptic partial differential equations (PDEs) on irregular domains using GPU acceleration, based on Ying's kernel-free boundary integral (KFBI) method. The method addresses limitations imposed by CFL conditions in explicit schemes and accuracy issues in fully implicit schemes for the Laplacian operator. To overcome these challenges, the paper employs a series of second-order time discrete schemes and splits the Laplacian operator into explicit and implicit components. Specifically, the Crank-Nicolson method discretizes the heat equation in the temporal dimension, while the implicit scheme is used for the wave equation. The Schrodinger equation is treated using the Strang splitting method. By discretizing the temporal dimension implicitly, the heat, wave, and Schrodinger equations are transformed into a sequence of elliptic equations. The Laplacian operator on the right-hand side of the elliptic equation is obtained from the numerical scheme rather than being discretized and corrected by the five-point difference method. A Cartesian grid-based KFBI method is employed to solve the resulting elliptic equations. GPU acceleration, achieved through a parallel Cartesian grid solver, enhances the computational efficiency by exploiting high degrees of parallelism. Numerical results demonstrate that the proposed method achieves second-order accuracy for the heat, wave, and Schrodinger equations. Furthermore, the GPU-accelerated solvers for the three types of time-dependent equations exhibit a speedup of 30 times compared to CPU-based solvers.

Solving high-dimensional partial differential equations necessitates methods free of exponential scaling in the dimension of the problem. This work introduces a tensor network approach for the Kolmogorov backward equation via approximating directly the Markov operator. We show that the high-dimensional Markov operator can be obtained under a functional hierarchical tensor (FHT) ansatz with a hierarchical sketching algorithm. When the terminal condition admits an FHT ansatz, the proposed operator outputs an FHT ansatz for the PDE solution through an efficient functional tensor network contraction procedure. In addition, the proposed operator-based approach also provides an efficient way to solve the Kolmogorov forward equation when the initial distribution is in an FHT ansatz. We apply the proposed approach successfully to two challenging time-dependent Ginzburg-Landau models with hundreds of variables.

Quantized tensor trains (QTTs) have recently emerged as a framework for the numerical discretization of continuous functions, with the potential for widespread applications in numerical analysis. However, the theory of QTT approximation is not fully understood. In this work, we advance this theory from the point of view of multiscale polynomial interpolation. This perspective clarifies why QTT ranks decay with increasing depth, quantitatively controls QTT rank in terms of smoothness of the target function, and explains why certain functions with sharp features and poor quantitative smoothness can still be well approximated by QTTs. The perspective also motivates new practical and efficient algorithms for the construction of QTTs from function evaluations on multiresolution grids.

To integrate large systems of nonlinear differential equations in time, we consider a variant of nonlinear waveform relaxation (also known as dynamic iteration or Picard-Lindel\"of iteration), where at each iteration a linear inhomogeneous system of differential equations has to be solved. This is done by the exponential block Krylov subspace (EBK) method. Thus, we have an inner-outer iterative method, where iterative approximations are determined over a certain time interval, with no time stepping involved. This approach has recently been shown to be efficient as a time-parallel integrator within the PARAEXP framework. In this paper, convergence behavior of this method is assessed theoretically and practically. We examine efficiency of the method by testing it on nonlinear Burgers, three-dimensional Liouville-Bratu-Gelfand, and three-dimensional nonlinear heat conduction equations and comparing its performance with that of conventional time-stepping integrators.

In the present contribution we propose a novel conforming Finite Element scheme for the time-dependent Navier-Stokes equation, which is proven to be both convection quasi-robust and pressure robust. The method is built combining a "divergence-free" velocity/pressure couple (such as the Scott-Vogelius element), a Discontinuous Galerkin in time approximation, and a suitable SUPG-curl stabilization. A set of numerical tests, in accordance with the theoretical results, is included.

In a Jacobi--Davidson (JD) type method for singular value decomposition (SVD) problems, called JDSVD, a large symmetric and generally indefinite correction equation is approximately solved iteratively at each outer iteration, which constitutes the inner iterations and dominates the overall efficiency of JDSVD. In this paper, a convergence analysis is made on the minimal residual (MINRES) method for the correction equation. Motivated by the results obtained, a preconditioned correction equation is derived that extracts useful information from current searching subspaces to construct effective preconditioners for the correction equation and is proved to retain the same convergence of outer iterations of JDSVD. The resulting method is called inner preconditioned JDSVD (IPJDSVD) method. Convergence results show that MINRES for the preconditioned correction equation can converge much faster when there is a cluster of singular values closest to a given target, so that IPJDSVD is more efficient than JDSVD. A new thick-restart IPJDSVD algorithm with deflation and purgation is proposed that simultaneously accelerates the outer and inner convergence of the standard thick-restart JDSVD and computes several singular triplets of a large matrix. Numerical experiments justify the theory and illustrate the considerable superiority of IPJDSVD to JDSVD.

An accurate description of information is relevant for a range of problems in atomistic modeling, such as sampling methods, detecting rare events, analyzing datasets, or performing uncertainty quantification (UQ) in machine learning (ML)-driven simulations. Although individual methods have been proposed for each of these tasks, they lack a common theoretical background integrating their solutions. Here, we introduce an information theoretical framework that unifies predictions of phase transformations, kinetic events, dataset optimality, and model-free UQ from atomistic simulations, thus bridging materials modeling, ML, and statistical mechanics. We first demonstrate that, for a proposed representation, the information entropy of a distribution of atom-centered environments is a surrogate value for thermodynamic entropy. Using molecular dynamics (MD) simulations, we show that information entropy differences from trajectories can be used to build phase diagrams, identify rare events, and recover classical theories of nucleation. Building on these results, we use this general concept of entropy to quantify information in datasets for ML interatomic potentials (IPs), informing compression, explaining trends in testing errors, and evaluating the efficiency of active learning strategies. Finally, we propose a model-free UQ method for MLIPs using information entropy, showing it reliably detects extrapolation regimes, scales to millions of atoms, and goes beyond model errors. This method is made available as the package QUESTS: Quick Uncertainty and Entropy via STructural Similarity, providing a new unifying theory for data-driven atomistic modeling and combining efforts in ML, first-principles thermodynamics, and simulations.

This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.

北京阿比特科技有限公司