亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as $d$-logics. Unlike logics based on the topological closure operator, $d$-logics have not previously been studied in the framework of dynamical systems, which are pairs $(X,f)$ consisting of a topological space $X$ equipped with a continuous function $f\colon X\to X$. We introduce the logics $\bf{wK4C}$, $\bf{K4C}$ and $\bf{GLC}$ and show that they all have the finite Kripke model property and are sound and complete with respect to the $d$-semantics in this dynamical setting. In particular, we prove that $\bf{wK4C}$ is the $d$-logic of all dynamic topological systems, $\bf{K4C}$ is the $d$-logic of all $T_D$ dynamic topological systems, and $\bf{GLC}$ is the $d$-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where $f$ is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems $\bf{wK4H}$, $\bf{K4H}$ and $\bf{GLH}$. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological $d$-logics. Furthermore, our result for $\bf{GLC}$ constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation $\mathord{-}$ something known to be impossible over the class of all spaces.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

This article considers the popular MCMC method of unadjusted Langevin Monte Carlo (LMC) and provides a non-asymptotic analysis of its sampling error in 2-Wasserstein distance. The proof is based on a mean-square analysis framework refined from Li et al. (2019), which works for a large class of sampling algorithms based on discretizations of contractive SDEs. We establish an $\tilde{O}(\sqrt{d}/\epsilon)$ mixing time bound for LMC, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures. This bound improves the best previously known $\tilde{O}(d/\epsilon)$ result and is optimal (in terms of order) in both dimension $d$ and accuracy tolerance $\epsilon$ for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.

We propose a new approach to defining programming languages with effects, and proving observational equivalence. Operational machinery is given by a hypergraph-rewriting abstract machine inspired by Girard's Geometry of Interaction. It interprets a graph calculus of only three intrinsic constructs: variable binding, atom binding, and thunking. Everything else, including features which are commonly thought of as intrinsic, such as arithmetic or function abstraction and application, must be provided as extrinsic operations, with associated rewrite rules. The graph representation naturally leads to two new principles about equational reasoning, which we call \emph{locality} and \emph{robustness}. These concepts enable a novel flexible and powerful reasoning methodology about (type-free) languages with effects. The methodology is additionally capable of proving a generalised notion of observational equivalence that can be quantified over syntactically restricted contexts instead of all contexts, and also can be quantitatively constrained in terms of the number of reduction steps. We illustrate the methodology using the call-by-value lambda-calculus extended with (higher-order) state.

The Weisfeiler-Leman procedure is a widely-used technique for graph isomorphism testing that works by iteratively computing an isomorphism-invariant coloring of vertex tuples. Meanwhile, a fundamental tool in structural graph theory, which is often exploited in approaches to tackle the graph isomorphism problem, is the decomposition into 2- and 3-connected components. We prove that the 2-dimensional Weisfeiler-Leman algorithm implicitly computes the decomposition of a graph into its 3-connected components. This implies that the dimension of the algorithm needed to distinguish two given non-isomorphic graphs is at most the dimension required to distinguish non-isomorphic 3-connected components of the graphs (assuming dimension at least 2). To obtain our decomposition result, we show that, for k >= 2, the k-dimensional algorithm distinguishes k-separators, i.e., k-tuples of vertices that separate the graph, from other vertex k-tuples. As a byproduct, we also obtain insights about the connectivity of constituent graphs of association schemes. In an application of the results, we show the new upper bound of k on the Weisfeiler-Leman dimension of the class of graphs of treewidth at most k. Using a construction by Cai, F\"urer, and Immerman, we also provide a new lower bound that is asymptotically tight up to a factor of 2.

We propose a powerful adaptive contrast test with ordinal constraint contrast coefficients determined by observed responses. The adaptive contrast test can perform using easily calculated contrast coefficients and existing statistical software. We provide the sample SAS program codes of analysis and calculation of power for the adaptive contrast test. After the adaptive contrast test shows the statistically significant dose-response, we consider to select the best dose-response model from multiple dose-response models. Based on the best model, we identify a recommended dose. We demonstrate the adaptive contrast test for sample data. In addition, we show the calculation of coefficient, test statistic, and recommended dose for the actual study. We perform the simulation study with eleven scenarios to evaluate the performance of the adaptive contrast test. We confirmed the statistically significant dose-response for the sample data and the actual study. In the simulation study, we confirmed that the adaptive contrast test has higher power in most scenarios compared to the conventional method. In addition, we confirmed that the type 1 error rate of the adaptive contrast test was maintained at a significance level when there was no difference between the treatment groups. We conclude that the adaptive contrast test can be applied unproblematically to the dose-response study.

We present a general and user-extensible equality checking algorithm that is applicable to a large class of type theories. The algorithm has a type-directed phase for applying extensionality rules and a normalization phase based on computation rules, where both kinds of rules are defined using the type-theoretic concept of object-invertible rules. We also give sufficient syntactic criteria for recognizing such rules, as well as a simple pattern-matching algorithm for applying them. A third component of the algorithm is a suitable notion of principal arguments, which determines a notion of normal form. By varying these, we obtain known notions, such as weak head-normal and strong normal forms. We prove that our algorithm is sound. We implemented it in the Andromeda 2 proof assistant, which supports user-definable type theories. The user need only provide the equality rules they wish to use, which the algorithm automatically classifies as computation or extensionality rules, and select appropriate principal arguments.

In this work, we introduce a notion of dissipative weak solution for a system describing the evolution of a heat-conducting incompressible non-Newtonian fluid. This concept of solution is based on the balance of entropy instead of the balance of energy and has the advantage that it admits a weak-strong uniqueness principle, justifying the proposed formulation. We provide a proof of existence of solutions based on finite element approximations, thus obtaining the first convergence result of a numerical scheme for the full evolutionary system including temperature dependent coefficients and viscous dissipation terms. Then we proceed to prove the weak-strong uniqueness property of the system by means of a relative energy inequality.

We present $\cal L$, an extension of Parigot's $\lambda\mu$-calculus by adding negation as a type constructor, together with syntactic constructs that represent negation introduction and elimination. We will define a notion of reduction that extends $\lambda\mu$'s reduction system with two new reduction rules, and show that the system satisfies subject reduction. Using Aczel's generalisation of Tait and Martin-L\"of's notion of parallel reduction, we show that this extended reduction is confluent. Although the notion of type assignment has its limitations with respect to representation of proofs in natural deduction with implication and negation, we will show that all propositions that can be shown in there have a witness in $\cal L$. Using Girard's approach of reducibility candidates, we show that all typeable terms are strongly normalisable, and conclude the paper by showing that type assignment for $\cal L$ enjoys the principal typing property.

Formal methods provide very powerful tools and techniques for the design and analysis of complex systems. Their practical application remains however limited, due to the widely accepted belief that formal methods require extensive expertise and a steep learning curve. Writing correct formal specifications in form of logical formulas is still considered to be a difficult and error prone task. In this paper we propose DeepSTL, a tool and technique for the translation of informal requirements, given as free English sentences, into Signal Temporal Logic (STL), a formal specification language for cyber-physical systems, used both by academia and advanced research labs in industry. A major challenge to devise such a translator is the lack of publicly available informal requirements and formal specifications. We propose a two-step workflow to address this challenge. We first design a grammar-based generation technique of synthetic data, where each output is a random STL formula and its associated set of possible English translations. In the second step, we use a state-of-the-art transformer-based neural translation technique, to train an accurate attentional translator of English to STL. The experimental results show high translation quality for patterns of English requirements that have been well trained, making this workflow promising to be extended for processing more complex translation tasks.

Large scale knowledge graph embedding has attracted much attention from both academia and industry in the field of Artificial Intelligence. However, most existing methods concentrate solely on fact triples contained in the given knowledge graph. Inspired by the fact that logic rules can provide a flexible and declarative language for expressing rich background knowledge, it is natural to integrate logic rules into knowledge graph embedding, to transfer human knowledge to entity and relation embedding, and strengthen the learning process. In this paper, we propose a novel logic rule-enhanced method which can be easily integrated with any translation based knowledge graph embedding model, such as TransE . We first introduce a method to automatically mine the logic rules and corresponding confidences from the triples. And then, to put both triples and mined logic rules within the same semantic space, all triples in the knowledge graph are represented as first-order logic. Finally, we define several operations on the first-order logic and minimize a global loss over both of the mined logic rules and the transformed first-order logics. We conduct extensive experiments for link prediction and triple classification on three datasets: WN18, FB166, and FB15K. Experiments show that the rule-enhanced method can significantly improve the performance of several baselines. The highlight of our model is that the filtered Hits@1, which is a pivotal evaluation in the knowledge inference task, has a significant improvement (up to 700% improvement).

We study response generation for open domain conversation in chatbots. Existing methods assume that words in responses are generated from an identical vocabulary regardless of their inputs, which not only makes them vulnerable to generic patterns and irrelevant noise, but also causes a high cost in decoding. We propose a dynamic vocabulary sequence-to-sequence (DVS2S) model which allows each input to possess their own vocabulary in decoding. In training, vocabulary construction and response generation are jointly learned by maximizing a lower bound of the true objective with a Monte Carlo sampling method. In inference, the model dynamically allocates a small vocabulary for an input with the word prediction model, and conducts decoding only with the small vocabulary. Because of the dynamic vocabulary mechanism, DVS2S eludes many generic patterns and irrelevant words in generation, and enjoys efficient decoding at the same time. Experimental results on both automatic metrics and human annotations show that DVS2S can significantly outperform state-of-the-art methods in terms of response quality, but only requires 60% decoding time compared to the most efficient baseline.

北京阿比特科技有限公司