亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Context and motivation: Recently, Large Language Models (LLMs) like ChatGPT have demonstrated remarkable proficiency in various Natural Language Processing (NLP) tasks. Their application in Requirements Engineering (RE), especially in requirements classification, has gained increasing interest. Question/problem: In our research, we conducted an extensive empirical evaluation of ChatGPT models including text-davinci-003, gpt-3.5-turbo, and gpt-4 in both zero-shot and few-shot settings for requirements classification. The question arises as to how these models compare to traditional classification methods, specifically Support Vector Machine (SVM) and Long Short-Term Memory (LSTM). Principal ideas/results: Based on five diverse datasets, our results show that ChatGPT consistently outperforms LSTM, and while ChatGPT is more effective than SVM in classifying functional requirements (FR), SVM is better in classifying non-functional requirements (NFR). Our results also show that contrary to our expectations, the few-shot setting does not always lead to enhanced performance; in most instances, it was found to be suboptimal. Contribution: Our findings underscore the potential of LLMs in the RE domain, suggesting that they could play a pivotal role in future software engineering processes, particularly as tools to enhance requirements classification.

相關內容

在機器學習中,支持向量機(SVM,也稱為支持向量網絡)是帶有相關學習算法的監督學習模型,該算法分析用于分類和回歸分析的數據。支持向量機(SVM)算法是一種流行的機器學習工具,可為分類和回歸問題提供解決方案。給定一組訓練示例,每個訓練示例都標記為屬于兩個類別中的一個或另一個,則SVM訓練算法會構建一個模型,該模型將新示例分配給一個類別或另一個類別,使其成為非概率二進制線性分類器(盡管方法存在諸如Platt縮放的問題,以便在概率分類設置中使用SVM)。SVM模型是將示例表示為空間中的點,并進行了映射,以使各個類別的示例被盡可能寬的明顯間隙分開。然后,將新示例映射到相同的空間,并根據它們落入的間隙的側面來預測屬于一個類別。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Purpose: Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymptomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator tool. Methods: We assessed the tools across 900 CT series from the publicly available SAROS dataset, focusing on muscle, subcutaneous fat, and visceral fat. The Dice score was employed to assess accuracy in subcutaneous fat and muscle segmentation. Due to the lack of ground truth segmentations for visceral fat, Cohen's Kappa was utilized to assess segmentation agreement between the tools. Results: Our Internal tool achieved a 3% higher Dice (83.8 vs. 80.8) for subcutaneous fat and a 5% improvement (87.6 vs. 83.2) for muscle segmentation respectively. A Wilcoxon signed-rank test revealed that our results were statistically different with p<0.01. For visceral fat, the Cohen's kappa score of 0.856 indicated near-perfect agreement between the two tools. Our internal tool also showed very strong correlations for muscle volume (R^2=0.99), muscle attenuation (R^2=0.93), and subcutaneous fat volume (R^2=0.99) with a moderate correlation for subcutaneous fat attenuation (R^2=0.45). Conclusion: Our findings indicated that our Internal tool outperformed TotalSegmentator in measuring subcutaneous fat and muscle. The high Cohen's Kappa score for visceral fat suggests a reliable level of agreement between the two tools. These results demonstrate the potential of our tool in advancing the accuracy of body composition analysis.

Correlation coefficients play a pivotal role in quantifying linear relationships between random variables. Yet, their application to time series data is very challenging due to temporal dependencies. This paper introduces a novel approach to estimate the statistical significance of correlation coefficients in time series data, addressing the limitations of traditional methods based on the concept of effective degrees of freedom (or effective sample size, ESS). These effective degrees of freedom represent the independent sample size that would yield comparable test statistics under the assumption of no temporal correlation. We propose to assume a parametric Gaussian form for the autocorrelation function. We show that this assumption, motivated by a Laplace approximation, enables a simple estimator of the ESS that depends only on the temporal derivatives of the time series. Through numerical experiments, we show that the proposed approach yields accurate statistics while significantly reducing computational overhead. In addition, we evaluate the adequacy of our approach on real physiological signals, for assessing the connectivity measures in electrophysiology and detecting correlated arm movements in motion capture data. Our methodology provides a simple tool for researchers working with time series data, enabling robust hypothesis testing in the presence of temporal dependencies.

Autism Spectrum Disorder (ASD) is a complicated neurological condition which is challenging to diagnose. Numerous studies demonstrate that children diagnosed with autism struggle with maintaining attention spans and have less focused vision. The eye-tracking technology has drawn special attention in the context of ASD since anomalies in gaze have long been acknowledged as a defining feature of autism in general. Deep Learning (DL) approaches coupled with eye-tracking sensors are exploiting additional capabilities to advance the diagnostic and its applications. By learning intricate nonlinear input-output relations, DL can accurately recognize the various gaze and eye-tracking patterns and adjust to the data. Convolutions alone are insufficient to capture the important spatial information in gaze patterns or eye tracking. The dynamic kernel-based process known as involutions can improve the efficiency of classifying gaze patterns or eye tracking data. In this paper, we utilise two different image-processing operations to see how these processes learn eye-tracking patterns. Since these patterns are primarily based on spatial information, we use involution with convolution making it a hybrid, which adds location-specific capability to a deep learning model. Our proposed model is implemented in a simple yet effective approach, which makes it easier for applying in real life. We investigate the reasons why our approach works well for classifying eye-tracking patterns. For comparative analysis, we experiment with two separate datasets as well as a combined version of both. The results show that IC with three involution layers outperforms the previous approaches.

Multimodal Large Language Models (MLLMs) are experiencing rapid growth, yielding a plethora of noteworthy contributions in recent months. The prevailing trend involves adopting data-driven methodologies, wherein diverse instruction-following datasets are collected. However, a prevailing challenge persists in these approaches, specifically in relation to the limited visual perception ability, as CLIP-like encoders employed for extracting visual information from inputs. Though these encoders are pre-trained on billions of image-text pairs, they still grapple with the information loss dilemma, given that textual captions only partially capture the contents depicted in images. To address this limitation, this paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism. Specifically, we introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline, aiming to provide a more comprehensive and accurate summarization of visual inputs. Extensive experiments have evaluated its effectiveness of advancing MLLMs, showcasing improved visual perception achieved through the integration of visual experts.

We present Modular Polynomial (MP) Codes for Secure Distributed Matrix Multiplication (SDMM). The construction is based on the observation that one can decode certain proper subsets of the coefficients of a polynomial with fewer evaluations than is necessary to interpolate the entire polynomial. We also present Generalized Gap Additive Secure Polynomial (GGASP) codes. Both MP and GGASP codes are shown experimentally to perform favorably in terms of recovery threshold when compared to other comparable polynomials codes for SDMM which use the grid partition. Both MP and GGASP codes achieve the recovery threshold of Entangled Polynomial Codes for robustness against stragglers, but MP codes can decode below this recovery threshold depending on the set of worker nodes which fails. The decoding complexity of MP codes is shown to be lower than other approaches in the literature, due to the user not being tasked with interpolating an entire polynomial.

When exploring the development of Artificial General Intelligence (AGI), a critical task for these models involves interpreting and processing information from multiple image inputs. However, Large Multimodal Models (LMMs) encounter two issues in such scenarios: (1) a lack of fine-grained perception, and (2) a tendency to blend information across multiple images. We first extensively investigate the capability of LMMs to perceive fine-grained visual details when dealing with multiple input images. The research focuses on two aspects: first, image-to-image matching (to evaluate whether LMMs can effectively reason and pair relevant images), and second, multi-image-to-text matching (to assess whether LMMs can accurately capture and summarize detailed image information). We conduct evaluations on a range of both open-source and closed-source large models, including GPT-4V, Gemini, OpenFlamingo, and MMICL. To enhance model performance, we further develop a Contrastive Chain-of-Thought (CoCoT) prompting approach based on multi-input multimodal models. This method requires LMMs to compare the similarities and differences among multiple image inputs, and then guide the models to answer detailed questions about multi-image inputs based on the identified similarities and differences. Our experimental results showcase CoCoT's proficiency in enhancing the multi-image comprehension capabilities of large multimodal models.

Crowdfunding in the realm of the Social Web has received substantial attention, with prior research examining various aspects of campaigns, including project objectives, durations, and influential project categories for successful fundraising. These factors are crucial for entrepreneurs seeking donor support. However, the terrain of charity crowdfunding within the Social Web remains relatively unexplored, lacking comprehension of the motivations driving donations that often lack concrete reciprocation. Distinct from conventional crowdfunding that offers tangible returns, charity crowdfunding relies on intangible rewards like tax advantages, recognition posts, or advisory roles. Such details are often embedded within campaign narratives, yet, the analysis of textual content in charity crowdfunding is limited. This study introduces an inventive text analytics framework, utilizing Latent Dirichlet Allocation (LDA) to extract latent themes from textual descriptions of charity campaigns. The study has explored four different themes, two each in campaign and incentive descriptions. Campaign description themes are focused on child and elderly health mainly the ones who are diagnosed with terminal diseases. Incentive description themes are based on tax benefits, certificates, and appreciation posts. These themes, combined with numerical parameters, predict campaign success. The study was successful in using Random Forest Classifier to predict success of the campaign using both thematic and numerical parameters. The study distinguishes thematic categories, particularly medical need-based charity and general causes, based on project and incentive descriptions. In conclusion, this research bridges the gap by showcasing topic modelling utility in uncharted charity crowdfunding domains.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.

北京阿比特科技有限公司