Wayfinding in complex indoor environments is often challenging for older adults due to declines in navigational and spatial-cognition abilities. This paper introduces NavMarkAR, an augmented reality navigation system designed for smart-glasses to provide landmark-based guidance, aiming to enhance older adults' spatial navigation skills. This work addresses a significant gap in design research, with limited prior studies evaluating cognitive impacts of AR navigation systems. An initial usability test involved 6 participants, leading to prototype refinements, followed by a comprehensive study with 32 participants in a university setting. Results indicate improved wayfinding efficiency and cognitive map accuracy when using NavMarkAR. Future research will explore long-term cognitive skill retention with such navigational aids.
Continuous-time trajectory estimation is an attractive alternative to discrete-time batch estimation due to the ability to incorporate high-frequency measurements from asynchronous sensors while keeping the number of optimization parameters bounded. Two types of continuous-time estimation have become prevalent in the literature: Gaussian process regression and spline-based estimation. In this paper, we present a direct comparison between these two methods. We first compare them using a simple linear system, and then compare them in a camera and IMU sensor fusion scenario on SE(3) in both simulation and hardware. Our results show that if the same measurements and motion model are used, the two methods achieve similar trajectory accuracy. In addition, if the spline order is chosen so that the degree-of-differentiability of the two trajectory representations match, then they achieve similar solve times as well.
There exist challenges in learning and understanding religions as the presence of complexity and depth of religious doctrines and teachings. Chatbots as question-answering systems can help in solving these challenges. LLM chatbots use NLP techniques to establish connections between topics and accurately respond to complex questions. These capabilities make it perfect to be used in enlightenment on religion as a question answering chatbot. However, LLMs also have a tendency to generate false information, known as hallucination. The responses of the chatbots can include content that insults personal religious beliefs, interfaith conflicts, and controversial or sensitive topics. It needs to avoid such cases without promoting hate speech or offending certain groups of people or their beliefs. This study uses a vector database-based Retrieval Augmented Generation (RAG) approach to enhance the accuracy and transparency of LLMs. Our question-answering system is called as "MufassirQAS". We created a vector database with several open-access books that include Turkish context. These are Turkish translations, and interpretations on Islam. We worked on creating system prompts with care, ensuring they provide instructions that prevent harmful, offensive, or disrespectful responses. We also tested the MufassirQAS and ChatGPT with sensitive questions. We got better performance with our system. Study and enhancements are still in progress. Results and future works are given.
Due to its conceptual simplicity and generality, compressive neural representation has emerged as a promising alternative to traditional compression methods for managing massive volumetric datasets. The current practice of neural compression utilizes a single large multilayer perceptron (MLP) to encode the global volume, incurring slow training and inference. This paper presents an efficient compressive neural representation (ECNR) solution for time-varying data compression, utilizing the Laplacian pyramid for adaptive signal fitting. Following a multiscale structure, we leverage multiple small MLPs at each scale for fitting local content or residual blocks. By assigning similar blocks to the same MLP via size uniformization, we enable balanced parallelization among MLPs to significantly speed up training and inference. Working in concert with the multiscale structure, we tailor a deep compression strategy to compact the resulting model. We show the effectiveness of ECNR with multiple datasets and compare it with state-of-the-art compression methods (mainly SZ3, TTHRESH, and neurcomp). The results position ECNR as a promising solution for volumetric data compression.
Secure two-party computation with homomorphic encryption (HE) protects data privacy with a formal security guarantee but suffers from high communication overhead. While previous works, e.g., Cheetah, Iron, etc, have proposed efficient HE-based protocols for different neural network (NN) operations, they still assume high precision, e.g., fixed point 37 bit, for the NN operations and ignore NNs' native robustness against quantization error. In this paper, we propose HEQuant, which features low-precision-quantization-aware optimization for the HE-based protocols. We observe the benefit of a naive combination of quantization and HE quickly saturates as bit precision goes down. Hence, to further improve communication efficiency, we propose a series of optimizations, including an intra-coefficient packing algorithm and a quantization-aware tiling algorithm, to simultaneously reduce the number and precision of the transferred data. Compared with prior-art HE-based protocols, e.g., CrypTFlow2, Cheetah, Iron, etc, HEQuant achieves $3.5\sim 23.4\times$ communication reduction and $3.0\sim 9.3\times$ latency reduction. Meanwhile, when compared with prior-art network optimization frameworks, e.g., SENet, SNL, etc, HEQuant also achieves $3.1\sim 3.6\times$ communication reduction.
Emergency and non-emergency response systems are essential services provided by local governments and critical to protecting lives, the environment, and property. The effective handling of (non-)emergency calls is critical for public safety and well-being. By reducing the burden through non-emergency callers, residents in critical need of assistance through 911 will receive a fast and effective response. Collaborating with the Department of Emergency Communications (DEC) in Nashville, we analyzed 11,796 non-emergency call recordings and developed Auto311, the first automated system to handle 311 non-emergency calls, which (1) effectively and dynamically predicts ongoing non-emergency incident types to generate tailored case reports during the call; (2) itemizes essential information from dialogue contexts to complete the generated reports; and (3) strategically structures system-caller dialogues with optimized confidence. We used real-world data to evaluate the system's effectiveness and deployability. The experimental results indicate that the system effectively predicts incident type with an average F-1 score of 92.54%. Moreover, the system successfully itemizes critical information from relevant contexts to complete reports, evincing a 0.93 average consistency score compared to the ground truth. Additionally, emulations demonstrate that the system effectively decreases conversation turns as the utterance size gets more extensive and categorizes the ongoing call with 94.49% mean accuracy.
Recent approaches to automatically detect the speaker of an utterance of direct speech often disregard general information about characters in favor of local information found in the context, such as surrounding mentions of entities. In this work, we explore stylistic representations of characters built by encoding their quotes with off-the-shelf pretrained Authorship Verification models in a large corpus of English novels (the Project Dialogism Novel Corpus). Results suggest that the combination of stylistic and topical information captured in some of these models accurately distinguish characters among each other, but does not necessarily improve over semantic-only models when attributing quotes. However, these results vary across novels and more investigation of stylometric models particularly tailored for literary texts and the study of characters should be conducted.
State estimation for legged robots is challenging due to their highly dynamic motion and limitations imposed by sensor accuracy. By integrating Kalman filtering, optimization, and learning-based modalities, we propose a hybrid solution that combines proprioception and exteroceptive information for estimating the state of the robot's trunk. Leveraging joint encoder and IMU measurements, our Kalman filter is enhanced through a single-rigid body model that incorporates ground reaction force control outputs from convex Model Predictive Control optimization. The estimation is further refined through Gated Recurrent Units, which also considers semantic insights and robot height from a Vision Transformer autoencoder applied on depth images. This framework not only furnishes accurate robot state estimates, including uncertainty evaluations, but can minimize the nonlinear errors that arise from sensor measurements and model simplifications through learning. The proposed methodology is evaluated in hardware using a quadruped robot on various terrains, yielding a 65% improvement on the Root Mean Squared Error compared to our VIO SLAM baseline. Code example: //github.com/AlexS28/OptiState
The intricate relationship between human decision-making and emotions, particularly guilt and regret, has significant implications on behavior and well-being. Yet, these emotions subtle distinctions and interplay are often overlooked in computational models. This paper introduces a dataset tailored to dissect the relationship between guilt and regret and their unique textual markers, filling a notable gap in affective computing research. Our approach treats guilt and regret recognition as a binary classification task and employs three machine learning and six transformer-based deep learning techniques to benchmark the newly created dataset. The study further implements innovative reasoning methods like chain-of-thought and tree-of-thought to assess the models interpretive logic. The results indicate a clear performance edge for transformer-based models, achieving a 90.4% macro F1 score compared to the 85.3% scored by the best machine learning classifier, demonstrating their superior capability in distinguishing complex emotional states.
Believable proxies of human behavior can empower interactive applications ranging from immersive environments to rehearsal spaces for interpersonal communication to prototyping tools. In this paper, we introduce generative agents--computational software agents that simulate believable human behavior. Generative agents wake up, cook breakfast, and head to work; artists paint, while authors write; they form opinions, notice each other, and initiate conversations; they remember and reflect on days past as they plan the next day. To enable generative agents, we describe an architecture that extends a large language model to store a complete record of the agent's experiences using natural language, synthesize those memories over time into higher-level reflections, and retrieve them dynamically to plan behavior. We instantiate generative agents to populate an interactive sandbox environment inspired by The Sims, where end users can interact with a small town of twenty five agents using natural language. In an evaluation, these generative agents produce believable individual and emergent social behaviors: for example, starting with only a single user-specified notion that one agent wants to throw a Valentine's Day party, the agents autonomously spread invitations to the party over the next two days, make new acquaintances, ask each other out on dates to the party, and coordinate to show up for the party together at the right time. We demonstrate through ablation that the components of our agent architecture--observation, planning, and reflection--each contribute critically to the believability of agent behavior. By fusing large language models with computational, interactive agents, this work introduces architectural and interaction patterns for enabling believable simulations of human behavior.
Defensive deception is a promising approach for cyberdefense. Although defensive deception is increasingly popular in the research community, there has not been a systematic investigation of its key components, the underlying principles, and its tradeoffs in various problem settings. This survey paper focuses on defensive deception research centered on game theory and machine learning, since these are prominent families of artificial intelligence approaches that are widely employed in defensive deception. This paper brings forth insights, lessons, and limitations from prior work. It closes with an outline of some research directions to tackle major gaps in current defensive deception research.