Improving a 2003 result of Bohman and Holzman, we show that for $n \geq 1$, the Shannon capacity of the complement of the $2n+1$-cycle is at least $(2^{r_n} + 1)^{1/r_n} = 2 + \Omega(2^{-r_n}/r_n)$, where $r_n = \exp(O((\log n)^2))$ is the number of partitions of $2(n-1)$ into powers of $2$. We also discuss a connection between this result and work by Day and Johnson in the context of graph Ramsey numbers.
We prove that random quantum circuits on any geometry, including a 1D line, can form approximate unitary designs over $n$ qubits in $\log n$ depth. In a similar manner, we construct pseudorandom unitaries (PRUs) in 1D circuits in $\text{poly} \log n $ depth, and in all-to-all-connected circuits in $\text{poly} \log \log n $ depth. In all three cases, the $n$ dependence is optimal and improves exponentially over known results. These shallow quantum circuits have low complexity and create only short-range entanglement, yet are indistinguishable from unitaries with exponential complexity. Our construction glues local random unitaries on $\log n$-sized or $\text{poly} \log n$-sized patches of qubits to form a global random unitary on all $n$ qubits. In the case of designs, the local unitaries are drawn from existing constructions of approximate unitary $k$-designs, and hence also inherit an optimal scaling in $k$. In the case of PRUs, the local unitaries are drawn from existing unitary ensembles conjectured to form PRUs. Applications of our results include proving that classical shadows with 1D log-depth Clifford circuits are as powerful as those with deep circuits, demonstrating superpolynomial quantum advantage in learning low-complexity physical systems, and establishing quantum hardness for recognizing phases of matter with topological order.
We prove that for any graph $G$ of maximum degree at most $\Delta$, the zeros of its chromatic polynomial $\chi_G(x)$ (in $\mathbb{C}$) lie inside the disc of radius $5.94 \Delta$ centered at $0$. This improves on the previously best known bound of approximately $6.91\Delta$. We also obtain improved bounds for graphs of high girth. We prove that for every $g$ there is a constant $K_g$ such that for any graph $G$ of maximum degree at most $\Delta$ and girth at least $g$, the zeros of its chromatic polynomial $\chi_G(x)$ lie inside the disc of radius $K_g \Delta$ centered at $0$, where $K_g$ is the solution to a certain optimization problem. In particular, $K_g < 5$ when $g \geq 5$ and $K_g < 4$ when $g \geq 25$ and $K_g$ tends to approximately $3.86$ as $g \to \infty$. Key to the proof is a classical theorem of Whitney which allows us to relate the chromatic polynomial of a graph $G$ to the generating function of so-called broken-circuit-free forests in $G$. We also establish a zero-free disc for the generating function of all forests in $G$ (aka the partition function of the arboreal gas) which may be of independent interest.
The convex dimension of a $k$-uniform hypergraph is the smallest dimension $d$ for which there is an injective mapping of its vertices into $\mathbb{R}^d$ such that the set of $k$-barycenters of all hyperedges is in convex position. We completely determine the convex dimension of complete $k$-uniform hypergraphs, which settles an open question by Halman, Onn and Rothblum, who solved the problem for complete graphs. We also provide lower and upper bounds for the extremal problem of estimating the maximal number of hyperedges of $k$-uniform hypergraphs on $n$ vertices with convex dimension $d$. To prove these results, we restate them in terms of affine projections that preserve the vertices of the hypersimplex. More generally, we provide a full characterization of the projections that preserve its $i$-dimensional skeleton. In particular, we obtain a hypersimplicial generalization of the linear van Kampen-Flores theorem: for each $n$, $k$ and $i$ we determine onto which dimensions can the $(n,k)$-hypersimplex be linearly projected while preserving its $i$-skeleton. Our results have direct interpretations in terms of $k$-sets and $(i,j)$-partitions, and are closely related to the problem of finding large convexly independent subsets in Minkowski sums of $k$ point sets.
A linearly ordered (LO) $k$-colouring of a hypergraph assigns to each vertex a colour from the set $\{0,1,\ldots,k-1\}$ in such a way that each hyperedge has a unique maximum element. Barto, Batistelli, and Berg conjectured that it is NP-hard to find an LO $k$-colouring of an LO 2-colourable 3-uniform hypergraph for any constant $k\geq 2$ [STACS'21] but even the case $k=3$ is still open. Nakajima and \v{Z}ivn\'{y} gave polynomial-time algorithms for finding, given an LO 2-colourable 3-uniform hypergraph, an LO colouring with $O^*(\sqrt{n})$ colours [ICALP'22] and an LO colouring with $O^*(\sqrt[3]{n})$ colours [ACM ToCT'23]. Very recently, Louis, Newman, and Ray gave an SDP-based algorithm with $O^*(\sqrt[5]{n})$ colours. We present two simple polynomial-time algorithms that find an LO colouring with $O(\log_2(n))$ colours, which is an exponential improvement.
In the product $L_1\times L_2$ of two Kripke complete consistent logics, local tabularity of $L_1$ and $L_2$ is necessary for local tabularity of $L_1\times L_2$. However, it is not sufficient: the product of two locally tabular logics can be not locally tabular. We provide extra semantic and axiomatic conditions which give criteria of local tabularity of the product of two locally tabular logics. Then we apply them to identify new families of locally tabular products.
We provide an efficient $ O(n^2) $ implementation for solving the all pairs minimax path problem or widest path problem in an undirected dense graph. It is a code implementation of the Algorithm 4 (MMJ distance by Calculation and Copy) in a previous paper. The distance matrix is also called the all points path distance (APPD). We conducted experiments to test the implementation and algorithm, compared it with several other algorithms for solving the APPD matrix. Result shows Algorithm 4 works good for solving the widest path or minimax path APPD matrix. It can drastically improve the efficiency for computing the APPD matrix. There are several theoretical outcomes which claim the APPD matrix can be solved accurately in $ O(n^2) $ . However, they are impractical because there is no code implementation of these algorithms. It seems Algorithm 4 is the first algorithm that has an actual code implementation for solving the APPD matrix of minimax path or widest path problem in $ O(n^2) $, in an undirected dense graph.
We propose a Clifford noise reduction (CliNR) scheme that provides a reduction of the logical error rate of Clifford circuit with lower overhead than error correction and without the exponential sampling overhead of error mitigation. CliNR implements Clifford circuits by splitting them into sub-circuits that are performed using gate teleportation. A few random stabilizer measurements are used to detect errors in the resources states consumed by the gate teleportation. This can be seen as a teleported version of the CPC scheme, with offline fault-detection making it scalable. We prove that CliNR achieves a vanishing logical error rate for families of $n$-qubit Clifford circuits with size $s$ such that $nsp^2$ goes to 0, where $p$ is the physical error rate, meaning that it reaches the regime $ns = o(1/p^2)$ whereas the direct implementation is limited to $s = o(1/p)$. Moreover, CliNR uses only $3n+1$ qubits, $2s + o(s)$ gates and has zero rejection rate. This small overhead makes it more practical than quantum error correction in the near term and our numerical simulations show that CliNR provides a reduction of the logical error rate in relevant noise regimes.
Random reversible and quantum circuits form random walks on the alternating group $\mathrm{Alt}(2^n)$ and unitary group $\mathrm{SU}(2^n)$, respectively. Known bounds on the spectral gap for the $t$-th moment of these random walks have inverse-polynomial dependence in both $n$ and $t$. We prove that the gap for random reversible circuits is $\Omega(n^{-3})$ for all $t\geq 1$, and the gap for random quantum circuits is $\Omega(n^{-3})$ for $t \leq \Theta(2^{n/2})$. These gaps are independent of $t$ in the respective regimes. We can further improve both gaps to $n^{-1}/\mathrm{polylog}(n, t)$ for $t\leq 2^{\Theta(n)}$, which is tight up to polylog factors. Our spectral gap results have a number of consequences: 1) Random reversible circuits with $\mathcal{O}(n^4 t)$ gates form multiplicative-error $t$-wise independent (even) permutations for all $t\geq 1$; for $t \leq \Theta(2^{n/6.1})$, we show that $\tilde{\mathcal{O}}(n^2 t)$ gates suffice. 2) Random quantum circuits with $\mathcal{O}(n^4 t)$ gates form multiplicative-error unitary $t$-designs for $t \leq \Theta(2^{n/2})$; for $t\leq \Theta(2^{2n/5})$, we show that $\tilde{\mathcal{O}}(n^2t)$ gates suffice. 3) The robust quantum circuit complexity of random circuits grows linearly for an exponentially long time, proving the robust Brown--Susskind conjecture [BS18,BCHJ+21]. Our spectral gap bounds are proven by reducing random quantum circuits to a more structured walk: a modification of the ``$\mathrm{PFC}$ ensemble'' from [MPSY24] together with an expander on the alternating group due to Kassabov [Kas07a], for which we give an efficient implementation using reversible circuits. In our reduction, we approximate the structured walk with local random circuits without losing the gap, which uses tools from the study of frustration-free Hamiltonians.
We propose a novel universal construction of two-level overlapping Schwarz preconditioners for $2m$th-order elliptic boundary value problems, where $m$ is a positive integer. The word "universal" here signifies that the coarse space construction can be applied to any finite element discretization for any $m$ that satisfies some common assumptions. We present numerical results for conforming, nonconforming, and discontinuous Galerkin-type finite element discretizations for high-order problems to demonstrate the scalability of the proposed two-level overlapping Schwarz preconditioners.
We introduce a framework for simulating, on an $(n+1)$-qubit quantum computer, the action of a Gaussian Bosonic (GB) circuit on a state over $2^n$ modes. Specifically, we encode the initial bosonic state's expectation values over quadrature operators (and their covariance matrix) as an input qubit-state. This is then evolved by a quantum circuit that effectively implements the symplectic propagators induced by the GB gates. We find families of GB circuits and initial states leading to efficient quantum simulations. For this purpose, we introduce a dictionary that maps between GB and qubit gates such that particle- (non-particle-) preserving GB gates lead to real (imaginary) time evolutions at the qubit level. For the special case of particle-preserving circuits, we present a BQP-complete GB decision problem, indicating that GB evolutions of Gaussian states on exponentially many modes are as powerful as universal quantum computers. We also perform numerical simulations of an interferometer on $\sim8$ billion modes, illustrating the power of our framework.