亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Serverless computing has gained significant traction for machine learning inference applications, which are often deployed as serverless workflows consisting of multiple CPU and GPU functions with data dependency. However, existing data-passing solutions for serverless computing primarily reply on host memory for fast data transfer, mandating substantial data movement and resulting in salient I/O overhead. In this paper, we present FaaSTube, a GPU-efficient data passing system for serverless inference. FaaSTube manages intermediate data within a GPU memory pool to facilitate direct data exchange between GPU functions. It enables fine-grained bandwidth sharing over PCIe and NVLink, minimizing data-passing latency for both host-to-GPU and GPU-to-GPU while providing performance isolation between functions. Additionally, FaaSTube implements an elastic GPU memory pool that dynamically scales to accommodate varying data-passing demands. Evaluations on real-world applications show that FaaSTube reduces end-to-end latency by up to 90\% and achieves up to 12x higher throughput compared to the state-of-the-art.

相關內容

Deep learning, with its robust aotomatic feature extraction capabilities, has demonstrated significant success in audio signal processing. Typically, these methods rely on static, pre-collected large-scale datasets for training, performing well on a fixed number of classes. However, the real world is characterized by constant change, with new audio classes emerging from streaming or temporary availability due to privacy. This dynamic nature of audio environments necessitates models that can incrementally learn new knowledge for new classes without discarding existing information. Introducing incremental learning to the field of audio signal processing, i.e., Audio Class-Incremental Learning (AuCIL), is a meaningful endeavor. We propose such a toolbox named AudioCIL to align audio signal processing algorithms with real-world scenarios and strengthen research in audio class-incremental learning.

Due to the sensitivity of data, federated learning (FL) is employed to enable distributed machine learning while safeguarding data privacy and accommodating the requirements of various devices. However, in the context of semi-decentralized federated learning (SD-FL), clients' communication and training states are dynamic. This variability arises from local training fluctuations, heterogeneous data distributions, and intermittent client participation. Most existing studies primarily focus on stable client states, neglecting the dynamic challenges present in real-world scenarios. To tackle this issue, we propose a trust-aware client scheduling mechanism (TRAIL) that assesses client states and contributions, enhancing model training efficiency through selective client participation. Our focus is on a semi-decentralized federated learning framework where edge servers and clients train a shared global model using unreliable intra-cluster model aggregation and inter-cluster model consensus. First, we develop an adaptive hidden semi-Markov model (AHSMM) to estimate clients' communication states and contributions. Next, we address a client-server association optimization problem to minimize global training loss. Using convergence analysis, we propose a greedy client scheduling algorithm. Finally, our experiments conducted on real-world datasets demonstrate that TRAIL outperforms state-of-the-art baselines, achieving an improvement of 8.7\% in test accuracy and a reduction of 15.3\% in training loss.

Domain reweighting is an emerging research area aimed at adjusting the relative weights of different data sources to improve the effectiveness and efficiency of language model pre-training. This paper demonstrates that the optimal composition of training data from different domains is scale-dependent, challenging the existing practice of determining optimal mixtures through small-scale experiments and directly applying them at larger scales. We derive an analytical model for the dependence of optimal weights on data scale and introduce *AutoScale*, a novel, practical approach for optimizing data compositions at potentially large training data scales. *AutoScale* first uses a principled optimization framework to find optimal compositions at smaller, feasible scales, then predicts optimal compositions at larger scales using our derived model. Our evaluation on GPT-2 Large and BERT pre-training demonstrates *AutoScale*'s effectiveness in improving training convergence and downstream performance. Particularly, for GPT-2 Large on RedPajama, *AutoScale* decreases validation perplexity 28% faster than baselines, with up to 38% speed-up over unweighted training, achieving the best performance across downstream tasks. This work provides insights into the varying benefits of data sources across training scales for language models, contributing to the burgeoning research on scale-dependent data curation. Code is open-sourced.

Fog computing brings about a transformative shift in data management, presenting unprecedented opportunities for enhanced performance and reduced latency. However, one of the key aspects of fog computing revolves around ensuring efficient power and reliability management. To address this challenge, we have introduced a novel model that proposes a non-cooperative game theory-based strategy to strike a balance between power consumption and reliability in decision-making processes. Our proposed model capitalizes on the Cold Primary/Backup strategy (CPB) to guarantee reliability target by re-executing tasks to different nodes when a fault occurs, while also leveraging Dynamic Voltage and Frequency Scaling (DVFS) to reduce power consumption during task execution and maximizing overall efficiency. Non-cooperative game theory plays a pivotal role in our model, as it facilitates the development of strategies and solutions that uphold reliability while reducing power consumption. By treating the trade-off between power and reliability as a non-cooperative game, our proposed method yields significant energy savings, with up to a 35% reduction in energy consumption, 41% decrease in wait time, and 31% shorter completion time compared to state-of-the-art approaches. Our findings underscore the value of game theory in optimizing power and reliability within fog computing environments, demonstrating its potential for driving substantial improvements

Compressing integer keys is a fundamental operation among multiple communities, such as database management (DB), information retrieval (IR), and high-performance computing (HPC). Recent advances in \emph{learned indexes} have inspired the development of \emph{learned compressors}, which leverage simple yet compact machine learning (ML) models to compress large-scale sorted keys. The core idea behind learned compressors is to \emph{losslessly} encode sorted keys by approximating them with \emph{error-bounded} ML models (e.g., piecewise linear functions) and using a \emph{residual array} to guarantee accurate key reconstruction. While the concept of learned compressors remains in its early stages of exploration, our benchmark results demonstrate that an SIMD-optimized learned compressor can significantly outperform state-of-the-art CPU-based compressors. Drawing on our preliminary experiments, this vision paper explores the potential of learned data compression to enhance critical areas in DBMS and related domains. Furthermore, we outline the key technical challenges that existing systems must address when integrating this emerging methodology.

Deep reinforcement learning (DRL) has revolutionised quadruped robot locomotion, but existing control frameworks struggle to generalise beyond their training-induced observational scope, resulting in limited adaptability. In contrast, animals achieve exceptional adaptability through gait transition strategies, diverse gait utilisation, and seamless adjustment to immediate environmental demands. Inspired by these capabilities, we present a novel DRL framework that incorporates key attributes of animal locomotion: gait transition strategies, pseudo gait procedural memory, and adaptive motion adjustments. This approach enables our framework to achieve unparalleled adaptability, demonstrated through blind zero-shot deployment on complex terrains and recovery from critically unstable states. Our findings offer valuable insights into the biomechanics of animal locomotion, paving the way for robust, adaptable robotic systems.

The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.

Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.

Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids (in Lagrangian descriptions). Existing approaches, however, require the supervision of consecutive particle properties, including positions and velocities. In this paper, we consider a partially observable scenario known as fluid dynamics grounding, that is, inferring the state transitions and interactions within the fluid particle systems from sequential visual observations of the fluid surface. We propose a differentiable two-stage network named NeuroFluid. Our approach consists of (i) a particle-driven neural renderer, which involves fluid physical properties into the volume rendering function, and (ii) a particle transition model optimized to reduce the differences between the rendered and the observed images. NeuroFluid provides the first solution to unsupervised learning of particle-based fluid dynamics by training these two models jointly. It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities. It is a potential alternative approach to understanding complex fluid mechanics, such as turbulence, that are difficult to model using traditional methods of mathematical physics.

Deep learning has emerged as a powerful machine learning technique that learns multiple layers of representations or features of the data and produces state-of-the-art prediction results. Along with the success of deep learning in many other application domains, deep learning is also popularly used in sentiment analysis in recent years. This paper first gives an overview of deep learning and then provides a comprehensive survey of its current applications in sentiment analysis.

北京阿比特科技有限公司