We prove that functions over the reals computable in polynomial time can be characterised using discrete ordinary differential equations (ODE), also known as finite differences. We also provide a characterisation of functions computable in polynomial space over the reals. In particular, this covers space complexity, while existing characterisations were only able to cover time complexity, and were restricted to functions over the integers. We prove furthermore that no artificial sign or test function is needed even for time complexity. At a technical level, this is obtained by proving that Turing machines can be simulated with analytic discrete ordinary differential equations. We believe this result opens the way to many applications, as it opens the possibility of programming with ODEs, with an underlying well-understood time and space complexity.
Mediation analysis is commonly used in epidemiological research, but guidance is lacking on how multivariable missing data should be dealt with in these analyses. Multiple imputation (MI) is a widely used approach, but questions remain regarding impact of missingness mechanism, how to ensure imputation model compatibility and approaches to variance estimation. To address these gaps, we conducted a simulation study based on the Victorian Adolescent Health Cohort Study. We considered six missingness mechanisms, involving varying assumptions regarding the influence of outcome and/or mediator on missingness in key variables. We compared the performance of complete-case analysis, seven MI approaches, differing in how the imputation model was tailored, and a "substantive model compatible" MI approach. We evaluated both the MI-Boot (MI, then bootstrap) and Boot-MI (bootstrap, then MI) approaches to variance estimation. Results showed that when the mediator and/or outcome influenced their own missingness, there was large bias in effect estimates, while for other mechanisms appropriate MI approaches yielded approximately unbiased estimates. Beyond incorporating all analysis variables in the imputation model, how MI was tailored for compatibility with mediation analysis did not greatly impact point estimation bias. BootMI returned variance estimates with smaller bias than MIBoot, especially in the presence of incompatibility.
Regularization of inverse problems is of paramount importance in computational imaging. The ability of neural networks to learn efficient image representations has been recently exploited to design powerful data-driven regularizers. While state-of-the-art plug-and-play methods rely on an implicit regularization provided by neural denoisers, alternative Bayesian approaches consider Maximum A Posteriori (MAP) estimation in the latent space of a generative model, thus with an explicit regularization. However, state-of-the-art deep generative models require a huge amount of training data compared to denoisers. Besides, their complexity hampers the optimization involved in latent MAP derivation. In this work, we first propose to use compressive autoencoders instead. These networks, which can be seen as variational autoencoders with a flexible latent prior, are smaller and easier to train than state-of-the-art generative models. As a second contribution, we introduce the Variational Bayes Latent Estimation (VBLE) algorithm, which performs latent estimation within the framework of variational inference. Thanks to a simple yet efficient parameterization of the variational posterior, VBLE allows for fast and easy (approximate) posterior sampling. Experimental results on image datasets BSD and FFHQ demonstrate that VBLE reaches similar performance than state-of-the-art plug-and-play methods, while being able to quantify uncertainties faster than other existing posterior sampling techniques.
Sparse joint shift (SJS) was recently proposed as a tractable model for general dataset shift which may cause changes to the marginal distributions of features and labels as well as the posterior probabilities and the class-conditional feature distributions. Fitting SJS for a target dataset without label observations may produce valid predictions of labels and estimates of class prior probabilities. We present new results on the transmission of SJS from sets of features to larger sets of features, a conditional correction formula for the class posterior probabilities under the target distribution, identifiability of SJS, and the relationship between SJS and covariate shift. In addition, we point out inconsistencies in the algorithms which were proposed for estimating the characteristics of SJS, as they could hamper the search for optimal solutions, and suggest potential improvements.
We define term rewriting systems on the vertices and faces of nestohedra, and show that the former are confluent and terminating. While the associated poset on vertices generalizes Barnard--McConville's flip order for graph-associahedra, the preorder on faces likely generalizes the facial weak order for permutahedra. Moreover, we define and study contextual families of nestohedra, whose local confluence diagrams satisfy a certain uniformity condition. Among them are associahedra and operahedra, whose associated proofs of confluence for their rewriting systems reproduce proofs of categorical coherence theorems for monoidal categories and categorified operads.
The univariate dimension reduction (UDR) method stands as a way to estimate the statistical moments of the output that is effective in a large class of uncertainty quantification (UQ) problems. UDR's fundamental strategy is to approximate the original function using univariate functions so that the UQ cost only scales linearly with the dimension of the problem. Nonetheless, UDR's effectiveness can diminish when uncertain inputs have high variance, particularly when assessing the output's second and higher-order statistical moments. This paper proposes a new method, gradient-enhanced univariate dimension reduction (GUDR), that enhances the accuracy of UDR by incorporating univariate gradient function terms into the UDR approximation function. Theoretical results indicate that the GUDR approximation is expected to be one order more accurate than UDR in approximating the original function, and it is expected to generate more accurate results in computing the output's second and higher-order statistical moments. Our proposed method uses a computational graph transformation strategy to efficiently evaluate the GUDR approximation function on tensor-grid quadrature inputs, and use the tensor-grid input-output data to compute the statistical moments of the output. With an efficient automatic differentiation method to compute the gradients, our method preserves UDR's linear scaling of computation time with problem dimension. Numerical results show that the GUDR is more accurate than UDR in estimating the standard deviation of the output and has a performance comparable to the method of moments using a third-order Taylor series expansion.
Trajectory generation and trajectory prediction are two critical tasks in autonomous driving, which generate various trajectories for testing during development and predict the trajectories of surrounding vehicles during operation, respectively. In recent years, emerging data-driven deep learning-based methods have shown great promise for these two tasks in learning various traffic scenarios and improving average performance without assuming physical models. However, it remains a challenging problem for these methods to ensure that the generated/predicted trajectories are physically realistic. This challenge arises because learning-based approaches often function as opaque black boxes and do not adhere to physical laws. Conversely, existing model-based methods provide physically feasible results but are constrained by predefined model structures, limiting their capabilities to address complex scenarios. To address the limitations of these two types of approaches, we propose a new method that integrates kinematic knowledge into neural stochastic differential equations (SDE) and designs a variational autoencoder based on this latent kinematics-aware SDE (LK-SDE) to generate vehicle motions. Experimental results demonstrate that our method significantly outperforms both model-based and learning-based baselines in producing physically realistic and precisely controllable vehicle trajectories. Additionally, it performs well in predicting unobservable physical variables in the latent space.
The word order of a sentence is shaped by multiple principles. The principle of syntactic dependency distance minimization is in conflict with the principle of surprisal minimization (or predictability maximization) in single head syntactic dependency structures: while the former predicts that the head should be placed at the center of the linear arrangement, the latter predicts that the head should be placed at one of the ends (either first or last). A critical question is when surprisal minimization (or predictability maximization) should surpass syntactic dependency distance minimization. In the context of single head structures, it has been predicted that this is more likely to happen when two conditions are met, i.e. (a) fewer words are involved and (b) words are shorter. Here we test the prediction on the noun phrase when it is composed of a demonstrative, a numeral, an adjective and a noun. We find that, across preferred orders in languages, the noun tends to be placed at one of the ends, confirming the theoretical prediction. We also show evidence of anti locality effects: syntactic dependency distances in preferred orders are longer than expected by chance.
Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.
The connections between (convex) optimization and (logconcave) sampling have been considerably enriched in the past decade with many conceptual and mathematical analogies. For instance, the Langevin algorithm can be viewed as a sampling analogue of gradient descent and has condition-number-dependent guarantees on its performance. In the early 1990s, Nesterov and Nemirovski developed the Interior-Point Method (IPM) for convex optimization based on self-concordant barriers, providing efficient algorithms for structured convex optimization, often faster than the general method. This raises the following question: can we develop an analogous IPM for structured sampling problems? In 2012, Kannan and Narayanan proposed the Dikin walk for uniformly sampling polytopes, and an improved analysis was given in 2020 by Laddha-Lee-Vempala. The Dikin walk uses a local metric defined by a self-concordant barrier for linear constraints. Here we generalize this approach by developing and adapting IPM machinery together with the Dikin walk for poly-time sampling algorithms. Our IPM-based sampling framework provides an efficient warm start and goes beyond uniform distributions and linear constraints. We illustrate the approach on important special cases, in particular giving the fastest algorithms to sample uniform, exponential, or Gaussian distributions on a truncated PSD cone. The framework is general and can be applied to other sampling algorithms.
With the growth of data sizes, visualizing them becomes more complex. Desktop displays are insufficient for presenting and collaborating on complex data visualizations. Large displays could provide the necessary space to demo or present complex data visualizations. However, designing and developing visualizations for such displays pose distinct challenges. Identifying these challenges is essential for researchers, designers, and developers in the field of data visualization. In this study, we aim to gain insights into the challenges encountered by designers and developers when creating data visualizations for large displays. We conducted a series of semi-structured interviews with experts who had experience in large displays and, through affinity diagramming, categorized the challenges.