Stress models are a promising approach for graph drawing. They minimize the weighted sum of the squared errors of the Euclidean and desired distances for each node pair. The desired distance typically uses the graph-theoretic distances obtained from the all-node pair shortest path problem. In a minimized stress function, the obtained coordinates are affected by the non-Euclidean property and the high-dimensionality of the graph-theoretic distance matrix. Therefore, the graph-theoretic distances used in stress models may not necessarily be the best metric for determining the node coordinates. In this study, we propose two different methods of adjusting the graph-theoretical distance matrix to a distance matrix suitable for graph drawing while preserving its structure. The first method is the application of eigenvalue decomposition to the inner product matrix obtained from the distance matrix and the obtainment of a new distance matrix by setting some eigenvalues with small absolute values to zero. The second approach is the usage of a stress model modified by adding a term that minimizes the Frobenius norm between the adjusted and original distance matrices. We perform computational experiments using several benchmark graphs to demonstrate that the proposed method improves some quality metrics, including the node resolution and the Gabriel graph property, when compared to conventional stress models.
Miniaturization of cameras and LiDAR sensors has enabled the development of wearable 3D mapping systems for emergency responders. These systems have the potential to revolutionize response capabilities by providing real-time, high-fidelity maps of dynamic and hazardous environments. We present our recent efforts towards the development of such ultra-portable 3D mapping systems. We review four different sensor configurations, either helmet-mounted or body-worn, with two different mapping algorithms that were implemented and evaluated during field trials. The paper discusses the experimental results with the aim to stimulate further discussion within the portable 3D mapping research community.
This paper proposes a new approach to Machine Learning (ML) that focuses on unsupervised continuous context-dependent learning of complex patterns. Although the proposal is partly inspired by some of the current knowledge about the structural and functional properties of the mammalian brain, we do not claim that biological systems work in an analogous way (nor the opposite). Based on some properties of the cerebellar cortex and adjacent structures, a proposal suitable for practical problems is presented. A synthetic structure capable of identifying and predicting complex temporal series will be defined and experimentally tested. The system relies heavily on prediction to help identify and learn patterns based on previously acquired contextual knowledge. As a proof of concept, the proposed system is shown to be able to learn, identify and predict a remarkably complex temporal series such as human speech, with no prior knowledge. From raw data, without any adaptation in the core algorithm, the system is able to identify certain speech structures from a set of Spanish sentences. Unlike conventional ML, the proposal can learn with a reduced training set. Although the idea can be applied to a constrained problem, such as the detection of unknown vocabulary in a speech, it could be used in more applications, such as vision, or (by incorporating the missing biological periphery) fit into other ML techniques. Given the trivial computational primitives used, a potential hardware implementation will be remarkably frugal. Coincidentally, the proposed model not only conforms to a plausible functional framework for biological systems but may also explain many elusive cognitive phenomena.
This paper examines the complex nature of cyber attacks through an analysis of the LastPass breach. It argues for the integration of human-centric considerations into cybersecurity measures, focusing on mitigating factors such as goal-directed behavior, cognitive overload, human biases (e.g., optimism, anchoring), and risky behaviors. Findings from an analysis of this breach offers support to the perspective that addressing both the human and technical dimensions of cyber defense can significantly enhance the resilience of cyber systems against complex threats. This means maintaining a balanced approach while simultaneously simplifying user interactions, making users aware of biases, and discouraging risky practices are essential for preventing cyber incidents.
Recent text and image foundation models are incredibly impressive, and these models are attracting an ever-increasing portion of research resources. In this position piece we aim to shift the ML research community's priorities ever so slightly to a different modality: tabular data. Tabular data is the dominant modality in many fields, yet it is given hardly any research attention and significantly lags behind in terms of scale and power. We believe the time is now to start developing tabular foundation models, or what we coin a Large Tabular Model (LTM). LTMs could revolutionise the way science and ML use tabular data: not as single datasets that are analyzed in a vacuum, but contextualized with respect to related datasets. The potential impact is far-reaching: from few-shot tabular models to automating data science; from out-of-distribution synthetic data to empowering multidisciplinary scientific discovery. We intend to excite reflections on the modalities we study, and convince some researchers to study large tabular models.
Interventions targeting the representation space of language models (LMs) have emerged as an effective means to influence model behavior. Such methods are employed, for example, to eliminate or alter the encoding of demographic information such as gender within the model's representations and, in so doing, create a counterfactual representation. However, because the intervention operates within the representation space, understanding precisely what aspects of the text it modifies poses a challenge. In this paper, we give a method to convert representation counterfactuals into string counterfactuals. We demonstrate that this approach enables us to analyze the linguistic alterations corresponding to a given representation space intervention and to interpret the features utilized to encode a specific concept. Moreover, the resulting counterfactuals can be used to mitigate bias in classification through data augmentation.
Large Language Models (LLMs) have shown excellent generalization capabilities that have led to the development of numerous models. These models propose various new architectures, tweaking existing architectures with refined training strategies, increasing context length, using high-quality training data, and increasing training time to outperform baselines. Analyzing new developments is crucial for identifying changes that enhance training stability and improve generalization in LLMs. This survey paper comprehensively analyses the LLMs architectures and their categorization, training strategies, training datasets, and performance evaluations and discusses future research directions. Moreover, the paper also discusses the basic building blocks and concepts behind LLMs, followed by a complete overview of LLMs, including their important features and functions. Finally, the paper summarizes significant findings from LLM research and consolidates essential architectural and training strategies for developing advanced LLMs. Given the continuous advancements in LLMs, we intend to regularly update this paper by incorporating new sections and featuring the latest LLM models.
Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. While many different methods have been proposed, there is a lack of a unifying framework that would lead to state-of-the-art results. Here we develop PathCon, a knowledge graph completion method that harnesses four novel insights to outperform existing methods. PathCon predicts relations between a pair of entities by: (1) Considering the Relational Context of each entity by capturing the relation types adjacent to the entity and modeled through a novel edge-based message passing scheme; (2) Considering the Relational Paths capturing all paths between the two entities; And, (3) adaptively integrating the Relational Context and Relational Path through a learnable attention mechanism. Importantly, (4) in contrast to conventional node-based representations, PathCon represents context and path only using the relation types, which makes it applicable in an inductive setting. Experimental results on knowledge graph benchmarks as well as our newly proposed dataset show that PathCon outperforms state-of-the-art knowledge graph completion methods by a large margin. Finally, PathCon is able to provide interpretable explanations by identifying relations that provide the context and paths that are important for a given predicted relation.
Visual Question Answering (VQA) models have struggled with counting objects in natural images so far. We identify a fundamental problem due to soft attention in these models as a cause. To circumvent this problem, we propose a neural network component that allows robust counting from object proposals. Experiments on a toy task show the effectiveness of this component and we obtain state-of-the-art accuracy on the number category of the VQA v2 dataset without negatively affecting other categories, even outperforming ensemble models with our single model. On a difficult balanced pair metric, the component gives a substantial improvement in counting over a strong baseline by 6.6%.
Image segmentation is an important component of many image understanding systems. It aims to group pixels in a spatially and perceptually coherent manner. Typically, these algorithms have a collection of parameters that control the degree of over-segmentation produced. It still remains a challenge to properly select such parameters for human-like perceptual grouping. In this work, we exploit the diversity of segments produced by different choices of parameters. We scan the segmentation parameter space and generate a collection of image segmentation hypotheses (from highly over-segmented to under-segmented). These are fed into a cost minimization framework that produces the final segmentation by selecting segments that: (1) better describe the natural contours of the image, and (2) are more stable and persistent among all the segmentation hypotheses. We compare our algorithm's performance with state-of-the-art algorithms, showing that we can achieve improved results. We also show that our framework is robust to the choice of segmentation kernel that produces the initial set of hypotheses.
While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.