Despite the current surge of interest in autonomous robotic systems, robot activity recognition within restricted indoor environments remains a formidable challenge. Conventional methods for detecting and recognizing robotic arms' activities often rely on vision-based or light detection and ranging (LiDAR) sensors, which require line-of-sight (LoS) access and may raise privacy concerns, for example, in nursing facilities. This research pioneers an innovative approach harnessing channel state information (CSI) measured from WiFi signals, subtly influenced by the activity of robotic arms. We developed an attention-based network to classify eight distinct activities performed by a Franka Emika robotic arm in different situations. Our proposed bidirectional vision transformer-concatenated (BiVTC) methodology aspires to predict robotic arm activities accurately, even when trained on activities with different velocities, all without dependency on external or internal sensors or visual aids. Considering the high dependency of CSI data to the environment, motivated us to study the problem of sniffer location selection, by systematically changing the sniffer's location and collecting different sets of data. Finally, this paper also marks the first publication of the CSI data of eight distinct robotic arm activities, collectively referred to as RoboFiSense. This initiative aims to provide a benchmark dataset and baselines to the research community, fostering advancements in the field of robotics sensing.
The imperative need to scale computation across numerous nodes highlights the significance of efficient parallel computing, particularly in the realm of Message Passing Interface (MPI) integration. The challenging parallel programming task of generating MPI-based parallel programs has remained unexplored. This study first investigates the performance of state-of-the-art language models in generating MPI-based parallel programs. Findings reveal that widely used models such as GPT-3.5 and PolyCoder (specialized multi-lingual code models) exhibit notable performance degradation, when generating MPI-based programs compared to general-purpose programs. In contrast, domain-specific models such as MonoCoder, which are pretrained on MPI-related programming languages of C and C++, outperform larger models. Subsequently, we introduce a dedicated downstream task of MPI-based program generation by fine-tuning MonoCoder on HPCorpusMPI. We call the resulting model as MPIrigen. We propose an innovative preprocessing for completion only after observing the whole code, thus enabling better completion with a wider context. Comparative analysis against GPT-3.5 zero-shot performance, using a novel HPC-oriented evaluation method, demonstrates that MPIrigen excels in generating accurate MPI functions up to 0.8 accuracy in location and function predictions, and with more than 0.9 accuracy for argument predictions. The success of this tailored solution underscores the importance of domain-specific fine-tuning in optimizing language models for parallel computing code generation, paving the way for a new generation of automatic parallelization tools. The sources of this work are available at our GitHub MPIrigen repository: //github.com/Scientific-Computing-Lab-NRCN/MPI-rigen
Slot attention has shown remarkable object-centric representation learning performance in computer vision tasks without requiring any supervision. Despite its object-centric binding ability brought by compositional modelling, as a deterministic module, slot attention lacks the ability to generate novel scenes. In this paper, we propose the Slot-VAE, a generative model that integrates slot attention with the hierarchical VAE framework for object-centric structured scene generation. For each image, the model simultaneously infers a global scene representation to capture high-level scene structure and object-centric slot representations to embed individual object components. During generation, slot representations are generated from the global scene representation to ensure coherent scene structures. Our extensive evaluation of the scene generation ability indicates that Slot-VAE outperforms slot representation-based generative baselines in terms of sample quality and scene structure accuracy.
Manipulating deformable objects is a ubiquitous task in household environments, demanding adequate representation and accurate dynamics prediction due to the objects' infinite degrees of freedom. This work proposes DeformNet, which utilizes latent space modeling with a learned 3D representation model to tackle these challenges effectively. The proposed representation model combines a PointNet encoder and a conditional neural radiance field (NeRF), facilitating a thorough acquisition of object deformations and variations in lighting conditions. To model the complex dynamics, we employ a recurrent state-space model (RSSM) that accurately predicts the transformation of the latent representation over time. Extensive simulation experiments with diverse objectives demonstrate the generalization capabilities of DeformNet for various deformable object manipulation tasks, even in the presence of previously unseen goals. Finally, we deploy DeformNet on an actual UR5 robotic arm to demonstrate its capability in real-world scenarios.
Surgical 3D reconstruction is a critical area of research in robotic surgery, with recent works adopting variants of dynamic radiance fields to achieve success in 3D reconstruction of deformable tissues from single-viewpoint videos. However, these methods often suffer from time-consuming optimization or inferior quality, limiting their adoption in downstream tasks. Inspired by 3D Gaussian Splatting, a recent trending 3D representation, we present EndoGS, applying Gaussian Splatting for deformable endoscopic tissue reconstruction. Specifically, our approach incorporates deformation fields to handle dynamic scenes, depth-guided supervision with spatial-temporal weight masks to optimize 3D targets with tool occlusion from a single viewpoint, and surface-aligned regularization terms to capture the much better geometry. As a result, EndoGS reconstructs and renders high-quality deformable endoscopic tissues from a single-viewpoint video, estimated depth maps, and labeled tool masks. Experiments on DaVinci robotic surgery videos demonstrate that EndoGS achieves superior rendering quality. Code is available at //github.com/HKU-MedAI/EndoGS.
This work explores the zero-shot adaptation capability of semantic skills, semantically interpretable experts' behavior patterns, in cross-domain settings, where a user input in interleaved multi-modal snippets can prompt a new long-horizon task for different domains. In these cross-domain settings, we present a semantic skill translator framework SemTra which utilizes a set of multi-modal models to extract skills from the snippets, and leverages the reasoning capabilities of a pretrained language model to adapt these extracted skills to the target domain. The framework employs a two-level hierarchy for adaptation: task adaptation and skill adaptation. During task adaptation, seq-to-seq translation by the language model transforms the extracted skills into a semantic skill sequence, which is tailored to fit the cross-domain contexts. Skill adaptation focuses on optimizing each semantic skill for the target domain context, through parametric instantiations that are facilitated by language prompting and contrastive learning-based context inferences. This hierarchical adaptation empowers the framework to not only infer a complex task specification in one-shot from the interleaved multi-modal snippets, but also adapt it to new domains with zero-shot learning abilities. We evaluate our framework with Meta-World, Franka Kitchen, RLBench, and CARLA environments. The results clarify the framework's superiority in performing long-horizon tasks and adapting to different domains, showing its broad applicability in practical use cases, such as cognitive robots interpreting abstract instructions and autonomous vehicles operating under varied configurations.
In the realm of automated robotic surgery and computer-assisted interventions, understanding robotic surgical activities stands paramount. Existing algorithms dedicated to surgical activity recognition predominantly cater to pre-defined closed-set paradigms, ignoring the challenges of real-world open-set scenarios. Such algorithms often falter in the presence of test samples originating from classes unseen during training phases. To tackle this problem, we introduce an innovative Open-Set Surgical Activity Recognition (OSSAR) framework. Our solution leverages the hyperspherical reciprocal point strategy to enhance the distinction between known and unknown classes in the feature space. Additionally, we address the issue of over-confidence in the closed set by refining model calibration, avoiding misclassification of unknown classes as known ones. To support our assertions, we establish an open-set surgical activity benchmark utilizing the public JIGSAWS dataset. Besides, we also collect a novel dataset on endoscopic submucosal dissection for surgical activity tasks. Extensive comparisons and ablation experiments on these datasets demonstrate the significant outperformance of our method over existing state-of-the-art approaches. Our proposed solution can effectively address the challenges of real-world surgical scenarios. Our code is publicly accessible at //github.com/longbai1006/OSSAR.
In unknown cluttered and dynamic environments such as disaster scenes, mobile robots need to perform target-driven navigation in order to find people or objects of interest, while being solely guided by images of the targets. In this paper, we introduce NavFormer, a novel end-to-end transformer architecture developed for robot target-driven navigation in unknown and dynamic environments. NavFormer leverages the strengths of both 1) transformers for sequential data processing and 2) self-supervised learning (SSL) for visual representation to reason about spatial layouts and to perform collision-avoidance in dynamic settings. The architecture uniquely combines dual-visual encoders consisting of a static encoder for extracting invariant environment features for spatial reasoning, and a general encoder for dynamic obstacle avoidance. The primary robot navigation task is decomposed into two sub-tasks for training: single robot exploration and multi-robot collision avoidance. We perform cross-task training to enable the transfer of learned skills to the complex primary navigation task without the need for task-specific fine-tuning. Simulated experiments demonstrate that NavFormer can effectively navigate a mobile robot in diverse unknown environments, outperforming existing state-of-the-art methods in terms of success rate and success weighted by (normalized inverse) path length. Furthermore, a comprehensive ablation study is performed to evaluate the impact of the main design choices of the structure and training of NavFormer, further validating their effectiveness in the overall system.
The rise of IoT devices has prompted the demand for deploying machine learning at-the-edge with real-time, efficient, and secure data processing. In this context, implementing machine learning (ML) models with real-valued weight parameters can prove to be impractical particularly for large models, and there is a need to train models with quantized discrete weights. At the same time, these low-dimensional models also need to preserve privacy of the underlying dataset. In this work, we present RQP-SGD, a new approach for privacy-preserving quantization to train machine learning models for low-memory ML-at-the-edge. This approach combines differentially private stochastic gradient descent (DP-SGD) with randomized quantization, providing a measurable privacy guarantee in machine learning. In particular, we study the utility convergence of implementing RQP-SGD on ML tasks with convex objectives and quantization constraints and demonstrate its efficacy over deterministic quantization. Through experiments conducted on two datasets, we show the practical effectiveness of RQP-SGD.
The electronic design automation of analog circuits has been a longstanding challenge in the integrated circuit field due to the huge design space and complex design trade-offs among circuit specifications. In the past decades, intensive research efforts have mostly been paid to automate the transistor sizing with a given circuit topology. By recognizing the graph nature of circuits, this paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing based on the encoder-dependent optimization subroutines. Particularly, CktGNN encodes circuit graphs using a two-level GNN framework (of nested GNN) where circuits are represented as combinations of subgraphs in a known subgraph basis. In this way, it significantly improves design efficiency by reducing the number of subgraphs to perform message passing. Nonetheless, another critical roadblock to advancing learning-assisted circuit design automation is a lack of public benchmarks to perform canonical assessment and reproducible research. To tackle the challenge, we introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers with carefully-extracted circuit specifications. OCB is also equipped with communicative circuit generation and evaluation capabilities such that it can help to generalize CktGNN to design various analog circuits by producing corresponding datasets. Experiments on OCB show the extraordinary advantages of CktGNN through representation-based optimization frameworks over other recent powerful GNN baselines and human experts' manual designs. Our work paves the way toward a learning-based open-sourced design automation for analog circuits. Our source code is available at \url{//github.com/zehao-dong/CktGNN}.
Sponge attacks aim to increase the energy consumption and computation time of neural networks deployed on hardware accelerators. Existing sponge attacks can be performed during inference via sponge examples or during training via Sponge Poisoning. Sponge examples leverage perturbations added to the model's input to increase energy and latency, while Sponge Poisoning alters the objective function of a model to induce inference-time energy/latency effects. In this work, we propose a novel sponge attack called SpongeNet. SpongeNet is the first sponge attack that is performed directly on the parameters of a pre-trained model. Our experiments show that SpongeNet can successfully increase the energy consumption of vision models with fewer samples required than Sponge Poisoning. Our experiments indicate that poisoning defenses are ineffective if not adjusted specifically for the defense against Sponge Poisoning (i.e., they decrease batch normalization bias values). Our work shows that SpongeNet is more effective on StarGAN than the state-of-the-art. Additionally, SpongeNet is stealthier than the previous Sponge Poisoning attack as it does not require significant changes in the victim model's weights. Our experiments indicate that the SpongeNet attack can be performed even when an attacker has access to only 1% of the entire dataset and reach up to 11% energy increase.