亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, advances in immersive multimedia technologies, such as extended reality (XR) technologies, have led to more realistic and user-friendly devices. However, these devices are often bulky and uncomfortable, still requiring tether connectivity for demanding applications. The deployment of the fifth generation of telecommunications technologies (5G) has set the basis for XR offloading solutions with the goal of enabling lighter and fully wearable XR devices. In this paper, we present a traffic dataset for two demanding XR offloading scenarios that are complementary to those available in the current state of the art, captured using a fully developed end-to-end XR offloading solution. We also propose a set of accurate traffic models for the proposed scenarios based on the captured data, accompanied by a simple and consistent method to generate synthetic data from the fitted models. Finally, using an open-source 5G radio access network (RAN) emulator, we validate the models both at the application and resource allocation layers. Overall, this work aims to provide a valuable contribution to the field with data and tools for designing, testing, improving, and extending XR offloading solutions in academia and industry.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 路徑 · state-of-the-art · 查準率/準確率 · 泛化理論 ·
2023 年 3 月 17 日

Intelligent vehicles (IVs) have attracted wide attention thanks to the augmented convenience, safety advantages, and potential commercial value. Although a few of autonomous driving unicorns assert that IVs will be commercially deployable by 2025, their deployment is still restricted to small-scale validation due to various issues, among which safety, reliability, and generalization of planning methods are prominent concerns. Precise computation of control commands or trajectories by planning methods remains a prerequisite for IVs, owing to perceptual imperfections under complex environments, which pose an obstacle to the successful commercialization of IVs. This paper aims to review state-of-the-art planning methods, including pipeline planning and end-to-end planning methods. In terms of pipeline methods, a survey of selecting algorithms is provided along with a discussion of the expansion and optimization mechanisms, whereas in end-to-end methods, the training approaches and verification scenarios of driving tasks are points of concern. Experimental platforms are reviewed to facilitate readers in selecting suitable training and validation methods. Finally, the current challenges and future directions are discussed. The side-by-side comparison presented in this survey helps to gain insights into the strengths and limitations of the reviewed methods, which also assists with system-level design choices.

The arrival of handwriting recognition technologies offers new possibilities for research in heritage studies. However, it is now necessary to reflect on the experiences and the practices developed by research teams. Our use of the Transkribus platform since 2018 has led us to search for the most significant ways to improve the performance of our handwritten text recognition (HTR) models which are made to transcribe French handwriting dating from the 17th century. This article therefore reports on the impacts of creating transcribing protocols, using the language model at full scale and determining the best way to use base models in order to help increase the performance of HTR models. Combining all of these elements can indeed increase the performance of a single model by more than 20% (reaching a Character Error Rate below 5%). This article also discusses some challenges regarding the collaborative nature of HTR platforms such as Transkribus and the way researchers can share their data generated in the process of creating or training handwritten text recognition models.

The total generalized variation extends the total variation by incorporating higher-order smoothness. Thus, it can also suffer from similar discretization issues related to isotropy. Inspired by the success of novel discretization schemes of the total variation, there has been recent work to improve the second-order total generalized variation discretization, based on the same design idea. In this work, we propose to extend this to a general discretization scheme based on interpolation filters, for which we prove variational consistency. We then describe how to learn these interpolation filters to optimize the discretization for various imaging applications. We illustrate the performance of the method on a synthetic data set as well as for natural image denoising.

Democratization of AI means not only that people can freely use AI, but also that people can collectively decide how AI is to be used. In particular, collective decision-making power is required to redress the negative externalities from the development of increasingly advanced AI systems, including degradation of the digital commons and unemployment from automation. The rapid pace of AI development and deployment currently leaves little room for this power. Monopolized in the hands of private corporations, the development of the most capable foundation models has proceeded largely without public input. There is currently no implemented mechanism for ensuring that the economic value generated by such models is redistributed to account for their negative externalities. The citizens that have generated the data necessary to train models do not have input on how their data are to be used. In this work, we propose that a public data trust assert control over training data for foundation models. In particular, this trust should scrape the internet as a digital commons, to license to commercial model developers for a percentage cut of revenues from deployment. First, we argue in detail for the existence of such a trust. We also discuss feasibility and potential risks. Second, we detail a number of ways for a data trust to incentivize model developers to use training data only from the trust. We propose a mix of verification mechanisms, potential regulatory action, and positive incentives. We conclude by highlighting other potential benefits of our proposed data trust and connecting our work to ongoing efforts in data and compute governance.

While pre-trained language models can generate individually fluent sentences for automatic story generation, they struggle to generate stories that are coherent, sensible and interesting. Current state-of-the-art (SOTA) story generation models explore using higher-level features such as plots or commonsense knowledge to improve the quality of generated stories. Prompt-based learning using very large pre-trained language models (VLPLMs) such as GPT3 has demonstrated impressive performance even across various NLP tasks. In this paper, we present an extensive study using automatic and human evaluation to compare the story generation capability of VLPLMs to those SOTA models in three different datasets where stories differ in style, register and length. Our results show that VLPLMs generate much higher quality stories than other story generation models, and to a certain extent rival human authors, although preliminary investigation also reveals that they tend to ``plagiarise'' real stories in scenarios that involve world knowledge.

Reconfigurable Intelligent Surfaces (RISs) constitute the key enabler for programmable electromagnetic propagation environments, and are lately being considered as a candidate physical-layer technology for the demanding connectivity, reliability, localization, and sustainability requirements of next generation wireless networks. In this paper, we first present the deployment scenarios for RIS-enabled smart wireless environments that have been recently designed within the ongoing European Union Horizon 2020 RISE-6G project, as well as a network architecture integrating RISs with existing standardized interfaces. We identify various RIS deployment strategies and sketch the core architectural requirements in terms of RIS control and signaling, depending on the RIS hardware architectures and respective capabilities. Furthermore, we introduce and discuss, with the aid of simulations and reflectarray measurements, two novel metrics that emerge in the context of RIS-empowered wireless systems: the RIS bandwidth and area of influence. Their extensive investigation corroborates the need for careful deployment and planning of the RIS technology in future networks.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Inspired by the human cognitive system, attention is a mechanism that imitates the human cognitive awareness about specific information, amplifying critical details to focus more on the essential aspects of data. Deep learning has employed attention to boost performance for many applications. Interestingly, the same attention design can suit processing different data modalities and can easily be incorporated into large networks. Furthermore, multiple complementary attention mechanisms can be incorporated in one network. Hence, attention techniques have become extremely attractive. However, the literature lacks a comprehensive survey specific to attention techniques to guide researchers in employing attention in their deep models. Note that, besides being demanding in terms of training data and computational resources, transformers only cover a single category in self-attention out of the many categories available. We fill this gap and provide an in-depth survey of 50 attention techniques categorizing them by their most prominent features. We initiate our discussion by introducing the fundamental concepts behind the success of attention mechanism. Next, we furnish some essentials such as the strengths and limitations of each attention category, describe their fundamental building blocks, basic formulations with primary usage, and applications specifically for computer vision. We also discuss the challenges and open questions related to attention mechanism in general. Finally, we recommend possible future research directions for deep attention.

Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

北京阿比特科技有限公司