As the uplink sensing has the advantage of easy implementation, it attracts great attention in integrated sensing and communication (ISAC) system. This paper presents an uplink ISAC system based on multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) technology. The mutual information (MI) is introduced as a unified metric to evaluate the performance of communication and sensing. In this paper, firstly, the upper and lower bounds of communication and sensing MI are derived in details based on the interaction between communication and sensing. And the ISAC waveform is optimized by maximizing the weighted sum of sensing and communication MI. The Monte Carlo simulation results show that, compared with other waveform optimization schemes, the proposed ISAC scheme has the best overall performance.
Nowadays, the ubiquitous usage of mobile devices and networks have raised concerns about the loss of control over personal data and research advance towards the trade-off between privacy and utility in scenarios that combine exchange communications, big databases and distributed and collaborative (P2P) Machine Learning techniques. On the other hand, although Federated Learning (FL) provides some level of privacy by retaining the data at the local node, which executes a local training to enrich a global model, this scenario is still susceptible to privacy breaches as membership inference attacks. To provide a stronger level of privacy, this research deploys an experimental environment for FL with Differential Privacy (DP) using benchmark datasets. The obtained results show that the election of parameters and techniques of DP is central in the aforementioned trade-off between privacy and utility by means of a classification example.
The training of neural networks requires tedious and often manual tuning of the network architecture. We propose a systematic method to insert new layers during the training process, which eliminates the need to choose a fixed network size before training. Our technique borrows techniques from constrained optimization and is based on first-order sensitivity information of the objective with respect to the virtual parameters that additional layers, if inserted, would offer. We consider fully connected feedforward networks with selected activation functions as well as residual neural networks. In numerical experiments, the proposed sensitivity-based layer insertion technique exhibits improved training decay, compared to not inserting the layer. Furthermore, the computational effort is reduced in comparison to inserting the layer from the beginning. The code is available at \url{//github.com/LeonieKreis/layer_insertion_sensitivity_based}.
The optimization of traffic signal control (TSC) is critical for an efficient transportation system. In recent years, reinforcement learning (RL) techniques have emerged as a popular approach for TSC and show promising results for highly adaptive control. However, existing RL-based methods suffer from notably poor real-world applicability and hardly have any successful deployments. The reasons for such failures are mostly due to the reliance on over-idealized traffic simulators for policy optimization, as well as using unrealistic fine-grained state observations and reward signals that are not directly obtainable from real-world sensors. In this paper, we propose a fully Data-Driven and simulator-free framework for realistic Traffic Signal Control (D2TSC). Specifically, we combine well-established traffic flow theory with machine learning to construct a reward inference model to infer the reward signals from coarse-grained traffic data. With the inferred rewards, we further propose a sample-efficient offline RL method to enable direct signal control policy learning from historical offline datasets of real-world intersections. To evaluate our approach, we collect historical traffic data from a real-world intersection, and develop a highly customized simulation environment that strictly follows real data characteristics. We demonstrate through extensive experiments that our approach achieves superior performance over conventional and offline RL baselines, and also enjoys much better real-world applicability.
The ever-increasing demand for high-quality and heterogeneous wireless communication services has driven extensive research on dynamic optimization strategies in wireless networks. Among several possible approaches, multi-agent deep reinforcement learning (MADRL) has emerged as a promising method to address a wide range of complex optimization problems like power control. However, the seamless application of MADRL to a variety of network optimization problems faces several challenges related to convergence. In this paper, we present the use of graphs as communication-inducing structures among distributed agents as an effective means to mitigate these challenges. Specifically, we harness graph neural networks (GNNs) as neural architectures for policy parameterization to introduce a relational inductive bias in the collective decision-making process. Most importantly, we focus on modeling the dynamic interactions among sets of neighboring agents through the introduction of innovative methods for defining a graph-induced framework for integrated communication and learning. Finally, the superior generalization capabilities of the proposed methodology to larger networks and to networks with different user categories is verified through simulations.
This paper investigates the channel estimation for holographic MIMO systems by unmasking their distinctions from the conventional one. Specifically, we elucidate that the channel estimation, subject to holographic MIMO's electromagnetically large antenna arrays, has to discriminate not only the angles of a user/scatterer but also its distance information, namely the three-dimensional (3D) azimuth and elevation angles plus the distance (AED) parameters. As the angular-domain representation fails to characterize the sparsity inherent in holographic MIMO channels, the tightly coupled 3D AED parameters are firstly decomposed for independently constructing their own covariance matrices. Then, the recovery of each individual parameter can be structured as a compressive sensing (CS) problem by harnessing the covariance matrix constructed. This pair of techniques contribute to a parametric decomposition and compressed deconstruction (DeRe) framework, along with a formulation of the maximum likelihood estimation for each parameter. Then, an efficient algorithm, namely DeRe-based variational Bayesian inference and message passing (DeRe-VM), is proposed for the sharp detection of the 3D AED parameters and the robust recovery of sparse channels. Finally, the proposed channel estimation regime is confirmed to be of great robustness in accommodating different channel conditions, regardless of the near-field and far-field contexts of a holographic MIMO system, as well as an improved performance in comparison to the state-of-the-art benchmarks.
In this paper, beam training and beam tracking are investigated for extremely large-scale multiple-input-multiple-output communication systems with partially-connected hybrid combining structures. Firstly, we propose a two-stage hybrid-field beam training scheme for both the near field and the far field. In the first stage, each subarray independently uses multiple far-field channel steering vectors to approximate near-field ones for analog combining. To find the codeword best fitting for the channel, digital combiners in the second stage are designed to combine the outputs of the analog combiners from the first stage. Then, based on the principle of stationary phase and the time-frequency duality, the expressions of subarray signals after analog combining are analytically derived and a beam refinement based on phase shifts of subarrays~(BRPSS) scheme with closed-form solutions is proposed for high-resolution channel parameter estimation. Moreover, a low-complexity near-field beam tracking scheme is developed, where the kinematic model is adopted to characterize the channel variations and the extended Kalman filter is exploited for beam tracking. Simulation results verify the effectiveness of the proposed schemes.
In the context of integrated sensing and communication (ISAC), a full-duplex (FD) transceiver can operate as a monostatic radar while maintaining communication capabilities. This paper investigates the design of precoders and combiners for a joint radar and communication (JRC) system at mmWave frequencies. The primary goals of the design are to minimize self-interference (SI) caused by FD operation, while guaranteeing certain performance in terms of some sensing and communication metrics, as well as taking into account the hardware limitations coming from a hybrid MIMO architecture. Specifically, we introduce a generalized eigenvalue-based precoder that takes into account downlink user rate, radar gain, and SI suppression. Since the hybrid analog/digital architecture degrades the SI suppression capability of the precoder, we further enhance SI suppression with the analog combiner. Our numerical results demonstrate that the proposed architecture achieves the required radar gain and SI mitigation while incurring a small loss in downlink spectral efficiency. Additionally, the numerical experiments also show that the use of orthogonal frequency division multiplexing (OFDM) for radar processing with the proposed beamforming architecture results in highly accurate range and velocity estimates for detected targets.
Despite efforts to align large language models to produce harmless responses, they are still vulnerable to jailbreak prompts that elicit unrestricted behaviour. In this work, we investigate persona modulation as a black-box jailbreaking method to steer a target model to take on personalities that are willing to comply with harmful instructions. Rather than manually crafting prompts for each persona, we automate the generation of jailbreaks using a language model assistant. We demonstrate a range of harmful completions made possible by persona modulation, including detailed instructions for synthesising methamphetamine, building a bomb, and laundering money. These automated attacks achieve a harmful completion rate of 42.5% in GPT-4, which is 185 times larger than before modulation (0.23%). These prompts also transfer to Claude 2 and Vicuna with harmful completion rates of 61.0% and 35.9%, respectively. Our work reveals yet another vulnerability in commercial large language models and highlights the need for more comprehensive safeguards.
Matching a source to a target probability measure is often solved by instantiating a linear optimal transport (OT) problem, parameterized by a ground cost function that quantifies discrepancy between points. When these measures live in the same metric space, the ground cost often defaults to its distance. When instantiated across two different spaces, however, choosing that cost in the absence of aligned data is a conundrum. As a result, practitioners often resort to solving instead a quadratic Gromow-Wasserstein (GW) problem. We exploit in this work a parallel between GW and cost-regularized OT, the regularized minimization of a linear OT objective parameterized by a ground cost. We use this cost-regularized formulation to match measures across two different Euclidean spaces, where the cost is evaluated between transformed source points and target points. We show that several quadratic OT problems fall in this category, and consider enforcing structure in linear transform (e.g. sparsity), by introducing structure-inducing regularizers. We provide a proximal algorithm to extract such transforms from unaligned data, and demonstrate its applicability to single-cell spatial transcriptomics/multiomics matching tasks.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.