In this paper, we propose VidLA, an approach for video-language alignment at scale. There are two major limitations of previous video-language alignment approaches. First, they do not capture both short-range and long-range temporal dependencies and typically employ complex hierarchical deep network architectures that are hard to integrate with existing pretrained image-text foundation models. To effectively address this limitation, we instead keep the network architecture simple and use a set of data tokens that operate at different temporal resolutions in a hierarchical manner, accounting for the temporally hierarchical nature of videos. By employing a simple two-tower architecture, we are able to initialize our video-language model with pretrained image-text foundation models, thereby boosting the final performance. Second, existing video-language alignment works struggle due to the lack of semantically aligned large-scale training data. To overcome it, we leverage recent LLMs to curate the largest video-language dataset to date with better visual grounding. Furthermore, unlike existing video-text datasets which only contain short clips, our dataset is enriched with video clips of varying durations to aid our temporally hierarchical data tokens in extracting better representations at varying temporal scales. Overall, empirical results show that our proposed approach surpasses state-of-the-art methods on multiple retrieval benchmarks, especially on longer videos, and performs competitively on classification benchmarks.
In this paper, we introduce LGTM, a novel Local-to-Global pipeline for Text-to-Motion generation. LGTM utilizes a diffusion-based architecture and aims to address the challenge of accurately translating textual descriptions into semantically coherent human motion in computer animation. Specifically, traditional methods often struggle with semantic discrepancies, particularly in aligning specific motions to the correct body parts. To address this issue, we propose a two-stage pipeline to overcome this challenge: it first employs large language models (LLMs) to decompose global motion descriptions into part-specific narratives, which are then processed by independent body-part motion encoders to ensure precise local semantic alignment. Finally, an attention-based full-body optimizer refines the motion generation results and guarantees the overall coherence. Our experiments demonstrate that LGTM gains significant improvements in generating locally accurate, semantically-aligned human motion, marking a notable advancement in text-to-motion applications. Code and data for this paper are available at //github.com/L-Sun/LGTM
Sui Lutris is the first smart-contract platform to sustainably achieve sub-second finality. It achieves this significant decrease by employing consensusless agreement not only for simple payments but for a large variety of transactions. Unlike prior work, Sui Lutris neither compromises expressiveness nor throughput and can run perpetually without restarts. Sui Lutris achieves this by safely integrating consensuless agreement with a high-throughput consensus protocol that is invoked out of the critical finality path but ensures that when a transaction is at risk of inconsistent concurrent accesses, its settlement is delayed until the total ordering is resolved. Building such a hybrid architecture is especially delicate during reconfiguration events, where the system needs to preserve the safety of the consensusless path without compromising the long-term liveness of potentially misconfigured clients. We thus develop a novel reconfiguration protocol, the first to provably show the safe and efficient reconfiguration of a consensusless blockchain. Sui Lutris is currently running in production and underpins the Sui smart-contract platform. Combined with the use of Objects instead of accounts it enables the safe execution of smart contracts that expose objects as a first-class resource. In our experiments Sui Lutris achieves latency lower than 0.5 seconds for throughput up to 5,000 certificates per second (150k ops/s with transaction blocks), compared to the state-of-the-art real-world consensus latencies of 3 seconds. Furthermore, it gracefully handles validators crash-recovery and does not suffer visible performance degradation during reconfiguration.
Effective editing of personal content holds a pivotal role in enabling individuals to express their creativity, weaving captivating narratives within their visual stories, and elevate the overall quality and impact of their visual content. Therefore, in this work, we introduce SwapAnything, a novel framework that can swap any objects in an image with personalized concepts given by the reference, while keeping the context unchanged. Compared with existing methods for personalized subject swapping, SwapAnything has three unique advantages: (1) precise control of arbitrary objects and parts rather than the main subject, (2) more faithful preservation of context pixels, (3) better adaptation of the personalized concept to the image. First, we propose targeted variable swapping to apply region control over latent feature maps and swap masked variables for faithful context preservation and initial semantic concept swapping. Then, we introduce appearance adaptation, to seamlessly adapt the semantic concept into the original image in terms of target location, shape, style, and content during the image generation process. Extensive results on both human and automatic evaluation demonstrate significant improvements of our approach over baseline methods on personalized swapping. Furthermore, SwapAnything shows its precise and faithful swapping abilities across single object, multiple objects, partial object, and cross-domain swapping tasks. SwapAnything also achieves great performance on text-based swapping and tasks beyond swapping such as object insertion.
In recent years, large language models have attracted significant attention due to their exceptional performance across a multitude of natural language process tasks, and have been widely applied in various fields. However, the application of large language models in the Intellectual Property (IP) space is challenging due to the strong need for specialized knowledge, privacy protection, processing of extremely long text in this field. In this technical report, we present for the first time a low-cost, standardized procedure for training IP-oriented LLMs, meeting the unique requirements of the IP domain. Using this standard process, we have trained the PatentGPT series models based on open-source pretrained models. By evaluating them on the open-source IP-oriented benchmark MOZIP, our domain-specific LLMs outperforms GPT-4, indicating the effectiveness of the proposed training procedure and the expertise of the PatentGPT models in the IP demain. What is impressive is that our model significantly outperformed GPT-4 on the 2019 China Patent Agent Qualification Examination by achieving a score of 65, reaching the level of human experts. Additionally, the PatentGPT model, which utilizes the SMoE architecture, achieves performance comparable to that of GPT-4 in the IP domain and demonstrates a better cost-performance ratio on long-text tasks, potentially serving as an alternative to GPT-4 within the IP domain.
In this paper, we present Sim-Grasp, a robust 6-DOF two-finger grasping system that integrates advanced language models for enhanced object manipulation in cluttered environments. We introduce the Sim-Grasp-Dataset, which includes 1,550 objects across 500 scenarios with 7.9 million annotated labels, and develop Sim-GraspNet to generate grasp poses from point clouds. The Sim-Grasp-Polices achieve grasping success rates of 97.14% for single objects and 87.43% and 83.33% for mixed clutter scenarios of Levels 1-2 and Levels 3-4 objects, respectively. By incorporating language models for target identification through text and box prompts, Sim-Grasp enables both object-agnostic and target picking, pushing the boundaries of intelligent robotic systems.
In this paper, we propose a general application programming interface named OpenATLib for auto-tuning (AT). OpenATLib is designed to establish the reusability of AT functions. By using OpenATLib, we develop a fully auto-tuned sparse iterative solver named Xabclib. Xabclib has several novel run-time AT functions. First, the following new implementations of sparse matrix-vector multiplication (SpMV) for thread processing are implemented:(1) non-zero elements; (2) omission of zero-elements computation for vector reduction; (3) branchless segmented scan (BSS). According to the performance evaluation and the comparison with conventional implementations, the following results are obtained: (1) 14x speedup for non-zero elements and zero-elements computation omission for symmetric SpMV; (2) 4.62x speedup by using BSS. We also develop a "numerical computation policy" that can optimize memory space and computational accuracy. Using the policy, we obtain the following: (1) an averaged 1/45 memory space reduction; (2) avoidance of the "fault convergence" situation, which is a problem of conventional solvers.
Connecting text and visual modalities plays an essential role in generative intelligence. For this reason, inspired by the success of large language models, significant research efforts are being devoted to the development of Multimodal Large Language Models (MLLMs). These models can seamlessly integrate visual and textual modalities, both as input and output, while providing a dialogue-based interface and instruction-following capabilities. In this paper, we provide a comprehensive review of recent visual-based MLLMs, analyzing their architectural choices, multimodal alignment strategies, and training techniques. We also conduct a detailed analysis of these models across a wide range of tasks, including visual grounding, image generation and editing, visual understanding, and domain-specific applications. Additionally, we compile and describe training datasets and evaluation benchmarks, conducting comparisons among existing models in terms of performance and computational requirements. Overall, this survey offers a comprehensive overview of the current state of the art, laying the groundwork for future MLLMs.
Recent VQA models may tend to rely on language bias as a shortcut and thus fail to sufficiently learn the multi-modal knowledge from both vision and language. In this paper, we investigate how to capture and mitigate language bias in VQA. Motivated by causal effects, we proposed a novel counterfactual inference framework, which enables us to capture the language bias as the direct causal effect of questions on answers and reduce the language bias by subtracting the direct language effect from the total causal effect. Experiments demonstrate that our proposed counterfactual inference framework 1) is general to various VQA backbones and fusion strategies, 2) achieves competitive performance on the language-bias sensitive VQA-CP dataset while performs robustly on the balanced VQA v2 dataset.
We consider an interesting problem-salient instance segmentation in this paper. Other than producing bounding boxes, our network also outputs high-quality instance-level segments. Taking into account the category-independent property of each target, we design a single stage salient instance segmentation framework, with a novel segmentation branch. Our new branch regards not only local context inside each detection window but also its surrounding context, enabling us to distinguish the instances in the same scope even with obstruction. Our network is end-to-end trainable and runs at a fast speed (40 fps when processing an image with resolution 320x320). We evaluate our approach on a publicly available benchmark and show that it outperforms other alternative solutions. We also provide a thorough analysis of the design choices to help readers better understand the functions of each part of our network. The source code can be found at \url{//github.com/RuochenFan/S4Net}.
In this paper we address issues with image retrieval benchmarking on standard and popular Oxford 5k and Paris 6k datasets. In particular, annotation errors, the size of the dataset, and the level of challenge are addressed: new annotation for both datasets is created with an extra attention to the reliability of the ground truth. Three new protocols of varying difficulty are introduced. The protocols allow fair comparison between different methods, including those using a dataset pre-processing stage. For each dataset, 15 new challenging queries are introduced. Finally, a new set of 1M hard, semi-automatically cleaned distractors is selected. An extensive comparison of the state-of-the-art methods is performed on the new benchmark. Different types of methods are evaluated, ranging from local-feature-based to modern CNN based methods. The best results are achieved by taking the best of the two worlds. Most importantly, image retrieval appears far from being solved.