亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Exponential-family random graph models (ERGMs) are a family of network models originating in social network analysis, which have also been applied to biological networks. Advances in estimation algorithms have increased the practical scope of these models to larger networks, however it is still not always possible to estimate a model without encountering problems of model near-degeneracy, particularly if it is desired to use only simple model parameters, rather than more complex parameters designed to overcome the problem of near-degeneracy. Two new network models related to the ERGM, the Tapered ERGM, and the latent order logistic (LOLOG) model, have recently been proposed to overcome this problem. In this work I illustrate the application of the Tapered ERGM and the LOLOG to a set of biological networks, including protein-protein interaction (PPI) networks, gene regulatory networks, and neural networks. I find that the Tapered ERGM and the LOLOG are able to estimate models for networks for which it was not possible to estimate a conventional ERGM, and are able to do so using only simple model parameters. In the case of two neural networks where data on the spatial position of neurons is available, this allows the estimation of models including terms for spatial distance and triangle structures, allowing triangle motif statistical significance to be estimated while accounting for the effect of spatial proximity on connection probability. For some larger networks, however, Tapered ERGM and LOLOG estimation was not possible in practical time, while conventional ERGM models were able to be estimated only by using the Equilibrium Expectation (EE) algorithm.

相關內容

We consider problems where agents in a network seek a common quantity, measured independently and periodically by each agent through a local time-varying process. Numerous solvers addressing such problems have been developed in the past, featuring various adaptations of the local processing and the consensus step. However, existing solvers still lack support for advanced techniques, such as superiorization and over-the-air function computation (OTA-C). To address this limitation, we introduce a comprehensive framework for the analysis of distributed algorithms by characterizing them using the quasi-Fej\'er type algorithms and an extensive communication model. Under weak assumptions, we prove almost sure convergence of the algorithm to a common estimate for all agents. Moreover, we develop a specific class of algorithms within this framework to tackle distributed optimization problems with time-varying objectives, and, assuming that a time-invariant solution exists, prove its convergence to a solution. We also present a novel OTA-C protocol for consensus step in large decentralized networks, reducing communication overhead and enhancing network autonomy as compared to the existing protocols. The effectiveness of the algorithm, featuring superiorization and OTA-C, is demonstrated in a real-world application of distributed supervised learning over time-varying wireless networks, highlighting its low-latency and energy-efficiency compared to standard approaches.

Entangled states shared among distant nodes are frequently used in quantum network applications. When quantum resources are abundant, entangled states can be continuously distributed across the network, allowing nodes to consume them whenever necessary. This continuous distribution of entanglement enables quantum network applications to operate continuously while being regularly supplied with entangled states. Here, we focus on the steady-state performance analysis of protocols for continuous distribution of entanglement. We propose the virtual neighborhood size and the virtual node degree as performance metrics. We utilize the concept of Pareto optimality to formulate a multi-objective optimization problem to maximize the performance. As an example, we solve the problem for a quantum network with a tree topology. One of the main conclusions from our analysis is that the entanglement consumption rate has a greater impact on the protocol performance than the fidelity requirements. The metrics that we establish in this manuscript can be utilized to assess the feasibility of entanglement distribution protocols for large-scale quantum networks.

We consider the problem of estimating the marginal independence structure of a Bayesian network from observational data, learning an undirected graph we call the unconditional dependence graph. We show that unconditional dependence graphs of Bayesian networks correspond to the graphs having equal independence and intersection numbers. Using this observation, a Gr\"obner basis for a toric ideal associated to unconditional dependence graphs of Bayesian networks is given and then extended by additional binomial relations to connect the space of all such graphs. An MCMC method, called GrUES (Gr\"obner-based Unconditional Equivalence Search), is implemented based on the resulting moves and applied to synthetic Gaussian data. GrUES recovers the true marginal independence structure via a penalized maximum likelihood or MAP estimate at a higher rate than simple independence tests while also yielding an estimate of the posterior, for which the $20\%$ HPD credible sets include the true structure at a high rate for data-generating graphs with density at least $0.5$.

Among semiparametric regression models, partially linear additive models provide a useful tool to include additive nonparametric components as well as a parametric component, when explaining the relationship between the response and a set of explanatory variables. This paper concerns such models under sparsity assumptions for the covariates included in the linear component. Sparse covariates are frequent in regression problems where the task of variable selection is usually of interest. As in other settings, outliers either in the residuals or in the covariates involved in the linear component have a harmful effect. To simultaneously achieve model selection for the parametric component of the model and resistance to outliers, we combine preliminary robust estimators of the additive component, robust linear $MM-$regression estimators with a penalty such as SCAD on the coefficients in the parametric part. Under mild assumptions, consistency results and rates of convergence for the proposed estimators are derived. A Monte Carlo study is carried out to compare, under different models and contamination schemes, the performance of the robust proposal with its classical counterpart. The obtained results show the advantage of using the robust approach. Through the analysis of a real data set, we also illustrate the benefits of the proposed procedure.

Analysis of geospatial data has traditionally been model-based, with a mean model, customarily specified as a linear regression on the covariates, and a covariance model, encoding the spatial dependence. We relax the strong assumption of linearity and propose embedding neural networks directly within the traditional geostatistical models to accommodate non-linear mean functions while retaining all other advantages including use of Gaussian Processes to explicitly model the spatial covariance, enabling inference on the covariate effect through the mean and on the spatial dependence through the covariance, and offering predictions at new locations via kriging. We propose NN-GLS, a new neural network estimation algorithm for the non-linear mean in GP models that explicitly accounts for the spatial covariance through generalized least squares (GLS), the same loss used in the linear case. We show that NN-GLS admits a representation as a special type of graph neural network (GNN). This connection facilitates use of standard neural network computational techniques for irregular geospatial data, enabling novel and scalable mini-batching, backpropagation, and kriging schemes. Theoretically, we show that NN-GLS will be consistent for irregularly observed spatially correlated data processes. To our knowledge this is the first asymptotic consistency result for any neural network algorithm for spatial data. We demonstrate the methodology through simulated and real datasets.

Faithfully summarizing the knowledge encoded by a deep neural network (DNN) into a few symbolic primitive patterns without losing much information represents a core challenge in explainable AI. To this end, Ren et al. (2023c) have derived a series of theorems to prove that the inference score of a DNN can be explained as a small set of interactions between input variables. However, the lack of generalization power makes it still hard to consider such interactions as faithful primitive patterns encoded by the DNN. Therefore, given different DNNs trained for the same task, we develop a new method to extract interactions that are shared by these DNNs. Experiments show that the extracted interactions can better reflect common knowledge shared by different DNNs.

Most existing neural network-based approaches for solving stochastic optimal control problems using the associated backward dynamic programming principle rely on the ability to simulate the underlying state variables. However, in some problems, this simulation is infeasible, leading to the discretization of state variable space and the need to train one neural network for each data point. This approach becomes computationally inefficient when dealing with large state variable spaces. In this paper, we consider a class of this type of stochastic optimal control problems and introduce an effective solution employing multitask neural networks. To train our multitask neural network, we introduce a novel scheme that dynamically balances the learning across tasks. Through numerical experiments on real-world derivatives pricing problems, we prove that our method outperforms state-of-the-art approaches.

The computational demands of modern AI have spurred interest in optical neural networks (ONNs) which offer the potential benefits of increased speed and lower power consumption. However, current ONNs face various challenges,most significantly a limited calculation precision (typically around 4 bits) and the requirement for high-resolution signal format converters (digital-to-analogue conversions (DACs) and analogue-to-digital conversions (ADCs)). These challenges are inherent to their analog computing nature and pose significant obstacles in practical implementation. Here, we propose a digital-analog hybrid optical computing architecture for ONNs, which utilizes digital optical inputs in the form of binary words. By introducing the logic levels and decisions based on thresholding, the calculation precision can be significantly enhanced. The DACs for input data can be removed and the resolution of the ADCs can be greatly reduced. This can increase the operating speed at a high calculation precision and facilitate the compatibility with microelectronics. To validate our approach, we have fabricated a proof-of-concept photonic chip and built up a hybrid optical processor (HOP) system for neural network applications. We have demonstrated an unprecedented 16-bit calculation precision for high-definition image processing, with a pixel error rate (PER) as low as $1.8\times10^{-3}$ at an signal-to-noise ratio (SNR) of 18.2 dB. We have also implemented a convolutional neural network for handwritten digit recognition that shows the same accuracy as the one achieved by a desktop computer. The concept of the digital-analog hybrid optical computing architecture offers a methodology that could potentially be applied to various ONN implementations and may intrigue new research into efficient and accurate domain-specific optical computing architectures for neural networks.

Sparsity is a highly desired feature in deep neural networks (DNNs) since it ensures numerical efficiency, improves the interpretability of models (due to the smaller number of relevant features), and robustness. In machine learning approaches based on linear models, it is well known that there exists a connecting path between the sparsest solution in terms of the $\ell^1$ norm,i.e., zero weights and the non-regularized solution, which is called the regularization path. Very recently, there was a first attempt to extend the concept of regularization paths to DNNs by means of treating the empirical loss and sparsity ($\ell^1$ norm) as two conflicting criteria and solving the resulting multiobjective optimization problem. However, due to the non-smoothness of the $\ell^1$ norm and the high number of parameters, this approach is not very efficient from a computational perspective. To overcome this limitation, we present an algorithm that allows for the approximation of the entire Pareto front for the above-mentioned objectives in a very efficient manner. We present numerical examples using both deterministic and stochastic gradients. We furthermore demonstrate that knowledge of the regularization path allows for a well-generalizing network parametrization.

Typical pipelines for model geometry generation in computational biomedicine stem from images, which are usually considered to be at rest, despite the object being in mechanical equilibrium under several forces. We refer to the stress-free geometry computation as the reference configuration problem, and in this work we extend such a formulation to the theory of fully nonlinear poroelastic media. The main steps are (i) writing the equations in terms of the reference porosity and (ii) defining a time dependent problem whose steady state solution is the reference porosity. This problem can be computationally challenging as it can require several hundreds of iterations to converge, so we propose the use of Anderson acceleration to speed up this procedure. Our evidence shows that this strategy can reduce the number of iterations up to 80\%. In addition, we note that a primal formulation of the nonlinear mass conservation equations is not consistent due to the presence of second order derivatives of the displacement, which we alleviate through adequate mixed formulations. All claims are validated through numerical simulations in both idealized and realistic scenarios.

北京阿比特科技有限公司