亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Aczel-Mendler bisimulations are a coalgebraic extension of a variety of computational relations between systems. It is usual to assume that the underlying category satisfies some form of axiom of choice, so that the theory enjoys desirable properties, such as closure under composition. In this paper, we accommodate the definition in general regular categories and toposes. We show that this general definition 1) is closed under composition without using the axiom of choice, 2) coincide with other types of coalgebraic formulations under milder conditions, 3) coincide with the usual definition when the category has the regular axiom of choice. In particular, the case of toposes heavily relies on power-objects for which we recover some nice properties on the way. Finally, we describe several examples in Stone spaces, toposes for name-passing, and modules over a ring.

相關內容

Communication robots have the potential to contribute to effective human-XAI interaction as an interface that goes beyond textual or graphical explanations. One of their strengths is that they can use physical and vocal expressions to add detailed nuances to explanations. However, it is not clear how a robot can apply such expressions, or in particular, how we can develop a strategy to adaptively use such expressions depending on the task and user in dynamic interactions. To address this question, this paper proposes DynEmph, a method for a communication robot to decide where to emphasize XAI-generated explanations with physical expressions. It predicts the effect of emphasizing certain points on a user and aims to minimize the expected difference between predicted user decisions and AI-suggested ones. DynEmph features a strategy for deciding where to emphasize in a data-driven manner, relieving engineers from the need to manually design a strategy. We further conducted experiments to investigate how emphasis selection strategies affect the performance of user decisions. The results suggest that, while a naive strategy (emphasizing explanations for an AI's most probable class) does not necessarily work better, DynEmph effectively guides users to better decisions under the condition that the performance of the AI suggestion is high.

Cross-modal retrieval (CMR) aims to establish interaction between different modalities, among which supervised CMR is emerging due to its flexibility in learning semantic category discrimination. Despite the remarkable performance of previous supervised CMR methods, much of their success can be attributed to the well-annotated data. However, even for unimodal data, precise annotation is expensive and time-consuming, and it becomes more challenging with the multimodal scenario. In practice, massive multimodal data are collected from the Internet with coarse annotation, which inevitably introduces noisy labels. Training with such misleading labels would bring two key challenges -- enforcing the multimodal samples to \emph{align incorrect semantics} and \emph{widen the heterogeneous gap}, resulting in poor retrieval performance. To tackle these challenges, this work proposes UOT-RCL, a Unified framework based on Optimal Transport (OT) for Robust Cross-modal Retrieval. First, we propose a semantic alignment based on partial OT to progressively correct the noisy labels, where a novel cross-modal consistent cost function is designed to blend different modalities and provide precise transport cost. Second, to narrow the discrepancy in multi-modal data, an OT-based relation alignment is proposed to infer the semantic-level cross-modal matching. Both of these two components leverage the inherent correlation among multi-modal data to facilitate effective cost function. The experiments on three widely-used cross-modal retrieval datasets demonstrate that our UOT-RCL surpasses the state-of-the-art approaches and significantly improves the robustness against noisy labels.

Machine learning models can perform well on in-distribution data but often fail on biased subgroups that are underrepresented in the training data, hindering the robustness of models for reliable applications. Such subgroups are typically unknown due to the absence of subgroup labels. Discovering biased subgroups is the key to understanding models' failure modes and further improving models' robustness. Most previous works of subgroup discovery make an implicit assumption that models only underperform on a single biased subgroup, which does not hold on in-the-wild data where multiple biased subgroups exist. In this work, we propose Decomposition, Interpretation, and Mitigation (DIM), a novel method to address a more challenging but also more practical problem of discovering multiple biased subgroups in image classifiers. Our approach decomposes the image features into multiple components that represent multiple subgroups. This decomposition is achieved via a bilinear dimension reduction method, Partial Least Square (PLS), guided by useful supervision from the image classifier. We further interpret the semantic meaning of each subgroup component by generating natural language descriptions using vision-language foundation models. Finally, DIM mitigates multiple biased subgroups simultaneously via two strategies, including the data- and model-centric strategies. Extensive experiments on CIFAR-100 and Breeds datasets demonstrate the effectiveness of DIM in discovering and mitigating multiple biased subgroups. Furthermore, DIM uncovers the failure modes of the classifier on Hard ImageNet, showcasing its broader applicability to understanding model bias in image classifiers. The code is available at //github.com/ZhangAIPI/DIM.

The Weisfeiler-Leman (WL) dimension is a standard measure in descriptive complexity theory for the structural complexity of a graph. We prove that the WL-dimension of a graph on $n$ vertices is at most $3/20 \cdot n + o(n)= 0.15 \cdot n + o(n)$. The proof develops various techniques to analyze the structure of coherent configurations. This includes sufficient conditions under which a fiber can be restored up to isomorphism if it is removed, a recursive proof exploiting a degree reduction and treewidth bounds, as well as an analysis of interspaces involving small fibers. As a base case, we also analyze the dimension of coherent configurations with small fiber size and thereby graphs with small color class size.

Datalog is a powerful yet elegant language that allows expressing recursive computation. Although Datalog evaluation has been extensively studied in the literature, so far, only loose upper bounds are known on how fast a Datalog program can be evaluated. In this work, we ask the following question: given a Datalog program over a naturally-ordered semiring $\sigma$, what is the tightest possible runtime? To this end, our main contribution is a general two-phase framework for analyzing the data complexity of Datalog over $\sigma$: first ground the program into an equivalent system of polynomial equations (i.e. grounding) and then find the least fixpoint of the grounding over $\sigma$. We present algorithms that use structure-aware query evaluation techniques to obtain the smallest possible groundings. Next, efficient algorithms for fixpoint evaluation are introduced over two classes of semirings: (1) finite-rank semirings and (2) absorptive semirings of total order. Combining both phases, we obtain state-of-the-art and new algorithmic results. Finally, we complement our results with a matching fine-grained lower bound.

Electromagnetic information theory (EIT) is one of the important topics for 6G communication due to its potential to reveal the performance limit of wireless communication systems. For EIT, the research foundation is reasonable and accurate channel modeling. Existing channel modeling works for EIT in non-line-of-sight (NLoS) scenario focus on far-field modeling, which can not accurately capture the characteristics of the channel in near-field. In this paper, we propose the near-field channel model for EIT based on electromagnetic scattering theory. We model the channel by using non-stationary Gaussian random fields and derive the analytical expression of the correlation function of the fields. Furthermore, we analyze the characteristics of the proposed channel model, e.g., the sparsity of the model in wavenumber domain. Based on the sparsity of the model, we design a channel estimation scheme for near-field scenario. Numerical analysis verifies the correctness of the proposed scheme and shows that it can outperform existing schemes like least square (LS) and orthogonal matching pursuit (OMP).

Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

UMAP (Uniform Manifold Approximation and Projection) is a novel manifold learning technique for dimension reduction. UMAP is constructed from a theoretical framework based in Riemannian geometry and algebraic topology. The result is a practical scalable algorithm that applies to real world data. The UMAP algorithm is competitive with t-SNE for visualization quality, and arguably preserves more of the global structure with superior run time performance. Furthermore, UMAP has no computational restrictions on embedding dimension, making it viable as a general purpose dimension reduction technique for machine learning.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司