Score-based and diffusion models have emerged as effective approaches for both conditional and unconditional generation. Still conditional generation is based on either a specific training of a conditional model or classifier guidance, which requires training a noise-dependent classifier, even when the classifier for uncorrupted data is given. We propose an approach to sample from unconditional score-based generative models enforcing arbitrary logical constraints, without any additional training. Firstly, we show how to manipulate the learned score in order to sample from an un-normalized distribution conditional on a user-defined constraint. Then, we define a flexible and numerically stable neuro-symbolic framework for encoding soft logical constraints. Combining these two ingredients we obtain a general, but approximate, conditional sampling algorithm. We further developed effective heuristics aimed at improving the approximation. Finally, we show the effectiveness of our approach for various types of constraints and data: tabular data, images and time series.
Latent Gaussian process (GP) models are flexible probabilistic non-parametric function models. Vecchia approximations are accurate approximations for GPs to overcome computational bottlenecks for large data, and the Laplace approximation is a fast method with asymptotic convergence guarantees to approximate marginal likelihoods and posterior predictive distributions for non-Gaussian likelihoods. Unfortunately, the computational complexity of combined Vecchia-Laplace approximations grows faster than linearly in the sample size when used in combination with direct solver methods such as the Cholesky decomposition. Computations with Vecchia-Laplace approximations thus become prohibitively slow precisely when the approximations are usually the most accurate, i.e., on large data sets. In this article, we present several iterative methods for inference with Vecchia-Laplace approximations which make computations considerably faster compared to Cholesky-based calculations. We analyze our proposed methods theoretically and in experiments with simulated and real-world data. In particular, we obtain a speed-up of an order of magnitude compared to Cholesky-based inference and a threefold increase in prediction accuracy in terms of the continuous ranked probability score compared to a state-of-the-art method on a large satellite data set. All methods are implemented in a free C++ software library with high-level Python and R packages.
The recent advancements in large language models (LLMs) have sparked a growing apprehension regarding the potential misuse. One approach to mitigating this risk is to incorporate watermarking techniques into LLMs, allowing for the tracking and attribution of model outputs. This study examines a crucial aspect of watermarking: how significantly watermarks impact the quality of model-generated outputs. Previous studies have suggested a trade-off between watermark strength and output quality. However, our research demonstrates that it is possible to integrate watermarks without affecting the output probability distribution with appropriate implementation. We refer to this type of watermark as an unbiased watermark. This has significant implications for the use of LLMs, as it becomes impossible for users to discern whether a service provider has incorporated watermarks or not. Furthermore, the presence of watermarks does not compromise the performance of the model in downstream tasks, ensuring that the overall utility of the language model is preserved. Our findings contribute to the ongoing discussion around responsible AI development, suggesting that unbiased watermarks can serve as an effective means of tracking and attributing model outputs without sacrificing output quality.
Online algorithms with predictions have become a trending topic in the field of beyond worst-case analysis of algorithms. These algorithms incorporate predictions about the future to obtain performance guarantees that are of high quality when the predictions are good, while still maintaining bounded worst-case guarantees when predictions are arbitrarily poor. In general, the algorithm is assumed to be unaware of the prediction's quality. However, recent developments in the machine learning literature have studied techniques for providing uncertainty quantification on machine-learned predictions, which describes how certain a model is about its quality. This paper examines the question of how to optimally utilize uncertainty-quantified predictions in the design of online algorithms. In particular, we consider predictions augmented with uncertainty quantification describing the likelihood of the ground truth falling in a certain range, designing online algorithms with these probabilistic predictions for two classic online problems: ski rental and online search. In each case, we demonstrate that non-trivial modifications to algorithm design are needed to fully leverage the probabilistic predictions. Moreover, we consider how to utilize more general forms of uncertainty quantification, proposing a framework based on online learning that learns to exploit uncertainty quantification to make optimal decisions in multi-instance settings.
Deep generative models have shown tremendous success in data density estimation and data generation from finite samples. While these models have shown impressive performance by learning correlations among features in the data, some fundamental shortcomings are their lack of explainability, the tendency to induce spurious correlations, and poor out-of-distribution extrapolation. In an effort to remedy such challenges, one can incorporate the theory of causality in deep generative modeling. Structural causal models (SCMs) describe data-generating processes and model complex causal relationships and mechanisms among variables in a system. Thus, SCMs can naturally be combined with deep generative models. Causal models offer several beneficial properties to deep generative models, such as distribution shift robustness, fairness, and interoperability. We provide a technical survey on causal generative modeling categorized into causal representation learning and controllable counterfactual generation methods. We focus on fundamental theory, formulations, drawbacks, datasets, metrics, and applications of causal generative models in fairness, privacy, out-of-distribution generalization, and precision medicine. We also discuss open problems and fruitful research directions for future work in the field.
Learning measure-to-measure mappings is a crucial task in machine learning, featured prominently in generative modeling. Recent years have witnessed a surge of techniques that draw inspiration from optimal transport (OT) theory. Combined with neural network models, these methods collectively known as \textit{Neural OT} use optimal transport as an inductive bias: such mappings should be optimal w.r.t. a given cost function, in the sense that they are able to move points in a thrifty way, within (by minimizing displacements) or across spaces (by being isometric). This principle, while intuitive, is often confronted with several practical challenges that require adapting the OT toolbox: cost functions other than the squared-Euclidean cost can be challenging to handle, the deterministic formulation of Monge maps leaves little flexibility, mapping across incomparable spaces raises multiple challenges, while the mass conservation constraint inherent to OT can provide too much credit to outliers. While each of these mismatches between practice and theory has been addressed independently in various works, we propose in this work an elegant framework to unify them, called \textit{generative entropic neural optimal transport} (GENOT). GENOT can accommodate any cost function; handles randomness using conditional generative models; can map points across incomparable spaces, and can be used as an \textit{unbalanced} solver. We evaluate our approach through experiments conducted on various synthetic datasets and demonstrate its practicality in single-cell biology. In this domain, GENOT proves to be valuable for tasks such as modeling cell development, predicting cellular responses to drugs, and translating between different data modalities of cells.
Amortized variational inference produces a posterior approximation that can be rapidly computed given any new observation. Unfortunately, there are few guarantees about the quality of these approximate posteriors. We propose Conformalized Amortized Neural Variational Inference (CANVI), a procedure that is scalable, easily implemented, and provides guaranteed marginal coverage. Given a collection of candidate amortized posterior approximators, CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor. CANVI ensures that the resulting predictor constructs regions that contain the truth with a user-specified level of probability. CANVI is agnostic to design decisions in formulating the candidate approximators and only requires access to samples from the forward model, permitting its use in likelihood-free settings. We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation. Finally, we demonstrate the accurate calibration and high predictive efficiency of CANVI on a suite of simulation-based inference benchmark tasks and an important scientific task: analyzing galaxy emission spectra.
Optimal algorithms are developed for robust detection of changes in non-stationary processes. These are processes in which the distribution of the data after change varies with time. The decision-maker does not have access to precise information on the post-change distribution. It is shown that if the post-change non-stationary family has a distribution that is least favorable in a well-defined sense, then the algorithms designed using the least favorable distributions are robust and optimal. Non-stationary processes are encountered in public health monitoring and space and military applications. The robust algorithms are applied to real and simulated data to show their effectiveness.
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.