Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at //github.com/lezhang7/Retrieval_MuGI.
Retrieval Augmented Generation (RAG) has emerged as an effective solution for mitigating hallucinations in Large Language Models (LLMs). The retrieval stage in RAG typically involves a pre-trained embedding model, which converts queries and passages into vectors to capture their semantics. However, a standard pre-trained embedding model may exhibit sub-optimal performance when applied to specific domain knowledge, necessitating fine-tuning. This paper addresses scenarios where the embeddings are only available from a black-box model. We introduce Model augmented fine-tuning (Mafin) -- a novel approach for fine-tuning a black-box embedding model by augmenting it with a trainable embedding model. Our results demonstrate that Mafin significantly enhances the performance of the black-box embeddings by only requiring the training of a small augmented model. We validate the effectiveness of our method on both labeled and unlabeled datasets, illustrating its broad applicability and efficiency.
Generative Adversarial Imitation Learning (GAIL) trains a generative policy to mimic a demonstrator. It uses on-policy Reinforcement Learning (RL) to optimize a reward signal derived from a GAN-like discriminator. A major drawback of GAIL is its training instability - it inherits the complex training dynamics of GANs, and the distribution shift introduced by RL. This can cause oscillations during training, harming its sample efficiency and final policy performance. Recent work has shown that control theory can help with the convergence of a GAN's training. This paper extends this line of work, conducting a control-theoretic analysis of GAIL and deriving a novel controller that not only pushes GAIL to the desired equilibrium but also achieves asymptotic stability in a 'one-step' setting. Based on this, we propose a practical algorithm 'Controlled-GAIL' (C-GAIL). On MuJoCo tasks, our controlled variant is able to speed up the rate of convergence, reduce the range of oscillation and match the expert's distribution more closely both for vanilla GAIL and GAIL-DAC.
Recent advances in instruction-tuned Large Vision-Language Models (LVLMs) have imbued the models with the ability to generate high-level, image-grounded explanations with ease. While such capability is largely attributed to the rich world knowledge contained within the Large Language Models (LLMs), our work reveals their shortcomings in fine-grained visual categorization (FGVC) across six different benchmark settings. Most recent state-of-the-art LVLMs like LLaVa-1.5, InstructBLIP and GPT-4V not only severely deteriorate in terms of classification performance, e.g., average drop of 65.58 in EM for Stanford Dogs for LLaVA-1.5, but also struggle to generate an accurate explanation with detailed attributes based on the concept that appears within an input image despite their capability to generate holistic image-level descriptions. In-depth analyses show that instruction-tuned LVLMs exhibit modality gap, showing discrepancy when given textual and visual inputs that correspond to the same concept, preventing the image modality from leveraging the rich parametric knowledge within the LLMs. In an effort to further the community's endeavor in this direction, we propose a multiple granularity attribute-centric evaluation benchmark, Finer, which aims to establish a ground to evaluate LVLMs' fine-grained visual comprehension ability and provide significantly improved explainability.
Perceiving the complete shape of occluded objects is essential for human and machine intelligence. While the amodal segmentation task is to predict the complete mask of partially occluded objects, it is time-consuming and labor-intensive to annotate the pixel-level ground truth amodal masks. Box-level supervised amodal segmentation addresses this challenge by relying solely on ground truth bounding boxes and instance classes as supervision, thereby alleviating the need for exhaustive pixel-level annotations. Nevertheless, current box-level methodologies encounter limitations in generating low-resolution masks and imprecise boundaries, failing to meet the demands of practical real-world applications. We present a novel solution to tackle this problem by introducing a directed expansion approach from visible masks to corresponding amodal masks. Our approach involves a hybrid end-to-end network based on the overlapping region - the area where different instances intersect. Diverse segmentation strategies are applied for overlapping regions and non-overlapping regions according to distinct characteristics. To guide the expansion of visible masks, we introduce an elaborately-designed connectivity loss for overlapping regions, which leverages correlations with visible masks and facilitates accurate amodal segmentation. Experiments are conducted on several challenging datasets and the results show that our proposed method can outperform existing state-of-the-art methods with large margins.
Large language models (LLM) have recently attracted surging interest due to their outstanding capabilities across various domains. However, enabling efficient LLM inference is challenging due to its autoregressive decoding that generates tokens only one at a time. Although research works apply pruning or quantization to speed up LLM inference, they typically require fine-tuning the LLM, incurring significant time and economic costs. Meanwhile, speculative decoding has been proposed to use small speculative models (SSMs) to accelerate the inference of LLM. However, the low acceptance rate of SSM and the high verification cost of LLM prohibit further performance improvement of inference. In this paper, we propose Minions, an LLM inference system that accelerates LLM inference with a collective and adaptive speculative generation. Specifically, Minions proposes a majority-voted mechanism to leverage multiple SSMs to jointly speculate the outputs of LLM, which improves the inference performance without introducing prohibitive computation costs for LLM. To better trade off the number of tokens speculated from SSM and the verification cost of LLM, Minions proposes an adaptive mechanism to dynamically determine the optimal speculation length of SSM, which can achieve better inference performance across different models, datasets, and hyper-parameters. In addition, Minions decouples the SSM decoding and LLM verification efficiently and adopts a pipelined execution mechanism to further improve the inference performance of LLM. By comparing with the state-of-the-art LLM inference systems, we demonstrate that Minions can achieve higher inference throughput and lower inference time.
We study off-dynamics Reinforcement Learning (RL), where the policy is trained on a source domain and deployed to a distinct target domain. We aim to solve this problem via online distributionally robust Markov decision processes (DRMDPs), where the learning algorithm actively interacts with the source domain while seeking the optimal performance under the worst possible dynamics that is within an uncertainty set of the source domain's transition kernel. We provide the first study on online DRMDPs with function approximation for off-dynamics RL. We find that DRMDPs' dual formulation can induce nonlinearity, even when the nominal transition kernel is linear, leading to error propagation. By designing a $d$-rectangular uncertainty set using the total variation distance, we remove this additional nonlinearity and bypass the error propagation. We then introduce DR-LSVI-UCB, the first provably efficient online DRMDP algorithm for off-dynamics RL with function approximation, and establish a polynomial suboptimality bound that is independent of the state and action space sizes. Our work makes the first step towards a deeper understanding of the provable efficiency of online DRMDPs with linear function approximation. Finally, we substantiate the performance and robustness of DR-LSVI-UCB through different numerical experiments.
This study explores the realm of knowledge-base question answering (KBQA). KBQA is considered a challenging task, particularly in parsing intricate questions into executable logical forms. Traditional semantic parsing (SP)-based methods require extensive data annotations, which result in significant costs. Recently, the advent of few-shot in-context learning, powered by large language models (LLMs), has showcased promising capabilities. Yet, fully leveraging LLMs to parse questions into logical forms in low-resource scenarios poses a substantial challenge. To tackle these hurdles, we introduce Interactive-KBQA, a framework designed to generate logical forms through direct interaction with knowledge bases (KBs). Within this framework, we have developed three generic APIs for KB interaction. For each category of complex question, we devised exemplars to guide LLMs through the reasoning processes. Our method achieves competitive results on the WebQuestionsSP, ComplexWebQuestions, KQA Pro, and MetaQA datasets with a minimal number of examples (shots). Importantly, our approach supports manual intervention, allowing for the iterative refinement of LLM outputs. By annotating a dataset with step-wise reasoning processes, we showcase our model's adaptability and highlight its potential for contributing significant enhancements to the field.
Large Language Models (LLMs) have emerged as a pivotal force in language technology. Their robust reasoning capabilities and expansive knowledge repositories have enabled exceptional zero-shot generalization abilities across various facets of the natural language processing field, including information retrieval (IR). In this paper, we conduct an in-depth investigation into the utility of documents generated by LLMs for IR. We introduce a simple yet effective framework, Multi-Text Generation Integration (MuGI), to augment existing IR methodologies. Specifically, we prompt LLMs to generate multiple pseudo references and integrate with query for retrieval. The training-free MuGI model eclipses existing query expansion strategies, setting a new standard in sparse retrieval. It outstrips supervised counterparts like ANCE and DPR, achieving a notable over 18% enhancement in BM25 on the TREC DL dataset and a 7.5% increase on BEIR. Through MuGI, we have forged a rapid and high-fidelity re-ranking pipeline. This allows a relatively small 110M parameter retriever to surpass the performance of larger 3B models in in-domain evaluations, while also bridging the gap in out-of-distribution situations. We release our code and all generated references at //github.com/lezhang7/Retrieval_MuGI.
Thanks to advances in deep learning techniques, Human Pose Estimation (HPE) has achieved significant progress in natural scenarios. However, these models perform poorly in artificial scenarios such as painting and sculpture due to the domain gap, constraining the development of virtual reality and augmented reality. With the growth of model size, retraining the whole model on both natural and artificial data is computationally expensive and inefficient. Our research aims to bridge the domain gap between natural and artificial scenarios with efficient tuning strategies. Leveraging the potential of language models, we enhance the adaptability of traditional pose estimation models across diverse scenarios with a novel framework called VLPose. VLPose leverages the synergy between language and vision to extend the generalization and robustness of pose estimation models beyond the traditional domains. Our approach has demonstrated improvements of 2.26% and 3.74% on HumanArt and MSCOCO, respectively, compared to state-of-the-art tuning strategies.
Speech enhancement aims to improve speech quality and intelligibility, especially in noisy environments where background noise degrades speech signals. Currently, deep learning methods achieve great success in speech enhancement, e.g. the representative convolutional recurrent neural network (CRN) and its variants. However, CRN typically employs consecutive downsampling and upsampling convolution for frequency modeling, which destroys the inherent structure of the signal over frequency. Additionally, convolutional layers lacks of temporal modelling abilities. To address these issues, we propose an innovative module combing a State space model and Inplace Convolution (SIC), and to replace the conventional convolution in CRN, called SICRN. Specifically, a dual-path multidimensional State space model captures the global frequencies dependency and long-term temporal dependencies. Meanwhile, the 2D-inplace convolution is used to capture the local structure, which abandons the downsampling and upsampling. Systematic evaluations on the public INTERSPEECH 2020 DNS challenge dataset demonstrate SICRN's efficacy. Compared to strong baselines, SICRN achieves performance close to state-of-the-art while having advantages in model parameters, computations, and algorithmic delay. The proposed SICRN shows great promise for improved speech enhancement.