Personalized text-to-image generation using diffusion models has recently emerged and garnered significant interest. This task learns a novel concept (e.g., a unique toy), illustrated in a handful of images, into a generative model that captures fine visual details and generates photorealistic images based on textual embeddings. In this paper, we present ViCo, a novel lightweight plug-and-play method that seamlessly integrates visual condition into personalized text-to-image generation. ViCo stands out for its unique feature of not requiring any fine-tuning of the original diffusion model parameters, thereby facilitating more flexible and scalable model deployment. This key advantage distinguishes ViCo from most existing models that necessitate partial or full diffusion fine-tuning. ViCo incorporates an image attention module that conditions the diffusion process on patch-wise visual semantics, and an attention-based object mask that comes at no extra cost from the attention module. Despite only requiring light parameter training (~6% compared to the diffusion U-Net), ViCo delivers performance that is on par with, or even surpasses, all state-of-the-art models, both qualitatively and quantitatively. This underscores the efficacy of ViCo, making it a highly promising solution for personalized text-to-image generation without the need for diffusion model fine-tuning. Code: //github.com/haoosz/ViCo
Recently, reference-based image super-resolution (RefSR) has shown excellent performance in image super-resolution (SR) tasks. The main idea of RefSR is to utilize additional information from the reference (Ref) image to recover the high-frequency components in low-resolution (LR) images. By transferring relevant textures through feature matching, RefSR models outperform existing single image super-resolution (SISR) models. However, their performance significantly declines when a domain gap between Ref and LR images exists, which often occurs in real-world scenarios, such as satellite imaging. In this letter, we introduce a Domain Matching (DM) module that can be seamlessly integrated with existing RefSR models to enhance their performance in a plug-and-play manner. To the best of our knowledge, we are the first to explore Domain Matching-based RefSR in remote sensing image processing. Our analysis reveals that their domain gaps often occur in different satellites, and our model effectively addresses these challenges, whereas existing models struggle. Our experiments demonstrate that the proposed DM module improves SR performance both qualitatively and quantitatively for remote sensing super-resolution tasks.
Conventional embedding-based models approach event time prediction in temporal knowledge graphs (TKGs) as a ranking problem. However, they often fall short in capturing essential temporal relationships such as order and distance. In this paper, we propose TEILP, a logical reasoning framework that naturally integrates such temporal elements into knowledge graph predictions. We first convert TKGs into a temporal event knowledge graph (TEKG) which has a more explicit representation of time in term of nodes of the graph. The TEKG equips us to develop a differentiable random walk approach to time prediction. Finally, we introduce conditional probability density functions, associated with the logical rules involving the query interval, using which we arrive at the time prediction. We compare TEILP with state-of-the-art methods on five benchmark datasets. We show that our model achieves a significant improvement over baselines while providing interpretable explanations. In particular, we consider several scenarios where training samples are limited, event types are imbalanced, and forecasting the time of future events based on only past events is desired. In all these cases, TEILP outperforms state-of-the-art methods in terms of robustness.
Pre-trained models (PTMs) are extensively utilized in various downstream tasks. Adopting untrusted PTMs may suffer from backdoor attacks, where the adversary can compromise the downstream models by injecting backdoors into the PTM. However, existing backdoor attacks to PTMs can only achieve partially task-agnostic and the embedded backdoors are easily erased during the fine-tuning process. In this paper, we propose a novel transferable backdoor attack, TransTroj, to simultaneously meet functionality-preserving, durable, and task-agnostic. In particular, we first formalize transferable backdoor attacks as the indistinguishability problem between poisoned and clean samples in the embedding space. We decompose the embedding indistinguishability into pre- and post-indistinguishability, representing the similarity of the poisoned and reference embeddings before and after the attack. Then, we propose a two-stage optimization that separately optimizes triggers and victim PTMs to achieve embedding indistinguishability. We evaluate TransTroj on four PTMs and six downstream tasks. Experimental results show that TransTroj significantly outperforms SOTA task-agnostic backdoor attacks (18%$\sim$99%, 68% on average) and exhibits superior performance under various system settings. The code is available at //github.com/haowang-cqu/TransTroj .
We introduce an integrated precise LiDAR, Inertial, and Visual (LIV) multi-modal sensor fused mapping system that builds on the differentiable surface splatting to improve the mapping fidelity, quality, and structural accuracy. Notably, this is also a novel form of tightly coupled map for LiDAR-visual-inertial sensor fusion. This system leverages the complementary characteristics of LiDAR and visual data to capture the geometric structures of large-scale 3D scenes and restore their visual surface information with high fidelity. The initial poses for surface Gaussian scenes are obtained using a LiDAR-inertial system with size-adaptive voxels. Then, we optimized and refined the Gaussians by visual-derived photometric gradients to optimize the quality and density of LiDAR measurements. Our method is compatible with various types of LiDAR, including solid-state and mechanical LiDAR, supporting both repetitive and non-repetitive scanning modes. bolstering structure construction through LiDAR and facilitating real-time generation of photorealistic renderings across diverse LIV datasets. It showcases notable resilience and versatility in generating real-time photorealistic scenes potentially for digital twins and virtual reality while also holding potential applicability in real-time SLAM and robotics domains. We release our software and hardware and self-collected datasets on Github\footnote[3]{//github.com/sheng00125/LIV-GaussMap} to benefit the community.
Advancements in generative models have sparked significant interest in generating images while adhering to specific structural guidelines. Scene graph to image generation is one such task of generating images which are consistent with the given scene graph. However, the complexity of visual scenes poses a challenge in accurately aligning objects based on specified relations within the scene graph. Existing methods approach this task by first predicting a scene layout and generating images from these layouts using adversarial training. In this work, we introduce a novel approach to generate images from scene graphs which eliminates the need of predicting intermediate layouts. We leverage pre-trained text-to-image diffusion models and CLIP guidance to translate graph knowledge into images. Towards this, we first pre-train our graph encoder to align graph features with CLIP features of corresponding images using a GAN based training. Further, we fuse the graph features with CLIP embedding of object labels present in the given scene graph to create a graph consistent CLIP guided conditioning signal. In the conditioning input, object embeddings provide coarse structure of the image and graph features provide structural alignment based on relationships among objects. Finally, we fine tune a pre-trained diffusion model with the graph consistent conditioning signal with reconstruction and CLIP alignment loss. Elaborate experiments reveal that our method outperforms existing methods on standard benchmarks of COCO-stuff and Visual Genome dataset.
Recent advancements in diffusion models have significantly enhanced the data synthesis with 2D control. Yet, precise 3D control in street view generation, crucial for 3D perception tasks, remains elusive. Specifically, utilizing Bird's-Eye View (BEV) as the primary condition often leads to challenges in geometry control (e.g., height), affecting the representation of object shapes, occlusion patterns, and road surface elevations, all of which are essential to perception data synthesis, especially for 3D object detection tasks. In this paper, we introduce MagicDrive, a novel street view generation framework offering diverse 3D geometry controls, including camera poses, road maps, and 3D bounding boxes, together with textual descriptions, achieved through tailored encoding strategies. Besides, our design incorporates a cross-view attention module, ensuring consistency across multiple camera views. With MagicDrive, we achieve high-fidelity street-view synthesis that captures nuanced 3D geometry and various scene descriptions, enhancing tasks like BEV segmentation and 3D object detection.
Recent advancements in text-to-image models have significantly enhanced image generation capabilities, yet a notable gap of open-source models persists in bilingual or Chinese language support. To address this need, we present Taiyi-Diffusion-XL, a new Chinese and English bilingual text-to-image model which is developed by extending the capabilities of CLIP and Stable-Diffusion-XL through a process of bilingual continuous pre-training. This approach includes the efficient expansion of vocabulary by integrating the most frequently used Chinese characters into CLIP's tokenizer and embedding layers, coupled with an absolute position encoding expansion. Additionally, we enrich text prompts by large vision-language model, leading to better images captions and possess higher visual quality. These enhancements are subsequently applied to downstream text-to-image models. Our empirical results indicate that the developed CLIP model excels in bilingual image-text retrieval.Furthermore, the bilingual image generation capabilities of Taiyi-Diffusion-XL surpass previous models. This research leads to the development and open-sourcing of the Taiyi-Diffusion-XL model, representing a notable advancement in the field of image generation, particularly for Chinese language applications. This contribution is a step forward in addressing the need for more diverse language support in multimodal research. The model and demonstration are made publicly available at \href{//huggingface.co/IDEA-CCNL/Taiyi-Stable-Diffusion-XL-3.5B/}{this https URL}, fostering further research and collaboration in this domain.
Latest diffusion-based methods for many image restoration tasks outperform traditional models, but they encounter the long-time inference problem. To tackle it, this paper proposes a Wavelet-Based Diffusion Model (WaveDM). WaveDM learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform, which is more time-saving in each step of sampling than modeling in the spatial domain. To ensure restoration performance, a unique training strategy is proposed where the low-frequency and high-frequency spectrums are learned using distinct modules. In addition, an Efficient Conditional Sampling (ECS) strategy is developed from experiments, which reduces the number of total sampling steps to around 5. Evaluations on twelve benchmark datasets including image raindrop removal, rain steaks removal, dehazing, defocus deblurring, demoir\'eing, and denoising demonstrate that WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods and over 100$\times$ faster than existing image restoration methods using vanilla diffusion models.
Recent text-to-image generation models have demonstrated incredible success in generating images that faithfully follow input prompts. However, the requirement of using words to describe a desired concept provides limited control over the appearance of the generated concepts. In this work, we address this shortcoming by proposing an approach to enable personalization capabilities in existing text-to-image diffusion models. We propose a novel architecture (BootPIG) that allows a user to provide reference images of an object in order to guide the appearance of a concept in the generated images. The proposed BootPIG architecture makes minimal modifications to a pretrained text-to-image diffusion model and utilizes a separate UNet model to steer the generations toward the desired appearance. We introduce a training procedure that allows us to bootstrap personalization capabilities in the BootPIG architecture using data generated from pretrained text-to-image models, LLM chat agents, and image segmentation models. In contrast to existing methods that require several days of pretraining, the BootPIG architecture can be trained in approximately 1 hour. Experiments on the DreamBooth dataset demonstrate that BootPIG outperforms existing zero-shot methods while being comparable with test-time finetuning approaches. Through a user study, we validate the preference for BootPIG generations over existing methods both in maintaining fidelity to the reference object's appearance and aligning with textual prompts.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.