This paper defines a new visual reasoning paradigm by introducing an important factor, i.e., transformation. The motivation comes from the fact that most existing visual reasoning tasks, such as CLEVR in VQA, are solely defined to test how well the machine understands the concepts and relations within static settings, like one image. We argue that this kind of state driven visual reasoning approach has limitations in reflecting whether the machine has the ability to infer the dynamics between different states, which has been shown as important as state-level reasoning for human cognition in Piaget's theory. To tackle this problem, we propose a novel transformation driven visual reasoning task. Given both the initial and final states, the target is to infer the corresponding single-step or multi-step transformation, represented as a triplet (object, attribute, value) or a sequence of triplets, respectively. Following this definition, a new dataset namely TRANCE is constructed on the basis of CLEVR, including three levels of settings, i.e., Basic (single-step transformation), Event (multi-step transformation), and View (multi-step transformation with variant views). Experimental results show that the state-of-the-art visual reasoning models perform well on Basic, but are still far from human-level intelligence on Event and View. We believe the proposed new paradigm will boost the development of machine visual reasoning. More advanced methods and real data need to be investigated in this direction. Code is available at: //github.com/hughplay/TVR.
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
Visual question answering (VQA) demands simultaneous comprehension of both the image visual content and natural language questions. In some cases, the reasoning needs the help of common sense or general knowledge which usually appear in the form of text. Current methods jointly embed both the visual information and the textual feature into the same space. However, how to model the complex interactions between the two different modalities is not an easy task. In contrast to struggling on multimodal feature fusion, in this paper, we propose to unify all the input information by natural language so as to convert VQA into a machine reading comprehension problem. With this transformation, our method not only can tackle VQA datasets that focus on observation based questions, but can also be naturally extended to handle knowledge-based VQA which requires to explore large-scale external knowledge base. It is a step towards being able to exploit large volumes of text and natural language processing techniques to address VQA problem. Two types of models are proposed to deal with open-ended VQA and multiple-choice VQA respectively. We evaluate our models on three VQA benchmarks. The comparable performance with the state-of-the-art demonstrates the effectiveness of the proposed method.
State-of-the-art deep convolutional networks (DCNs) such as squeeze-and- excitation (SE) residual networks implement a form of attention, also known as contextual guidance, which is derived from global image features. Here, we explore a complementary form of attention, known as visual saliency, which is derived from local image features. We extend the SE module with a novel global-and-local attention (GALA) module which combines both forms of attention -- resulting in state-of-the-art accuracy on ILSVRC. We further describe ClickMe.ai, a large-scale online experiment designed for human participants to identify diagnostic image regions to co-train a GALA network. Adding humans-in-the-loop is shown to significantly improve network accuracy, while also yielding visual features that are more interpretable and more similar to those used by human observers.
Recently, Visual Question Answering (VQA) has emerged as one of the most significant tasks in multimodal learning as it requires understanding both visual and textual modalities. Existing methods mainly rely on extracting image and question features to learn their joint feature embedding via multimodal fusion or attention mechanism. Some recent studies utilize external VQA-independent models to detect candidate entities or attributes in images, which serve as semantic knowledge complementary to the VQA task. However, these candidate entities or attributes might be unrelated to the VQA task and have limited semantic capacities. To better utilize semantic knowledge in images, we propose a novel framework to learn visual relation facts for VQA. Specifically, we build up a Relation-VQA (R-VQA) dataset based on the Visual Genome dataset via a semantic similarity module, in which each data consists of an image, a corresponding question, a correct answer and a supporting relation fact. A well-defined relation detector is then adopted to predict visual question-related relation facts. We further propose a multi-step attention model composed of visual attention and semantic attention sequentially to extract related visual knowledge and semantic knowledge. We conduct comprehensive experiments on the two benchmark datasets, demonstrating that our model achieves state-of-the-art performance and verifying the benefit of considering visual relation facts.
The collaborative reasoning for understanding each image-question pair is very critical but under-explored for an interpretable Visual Question Answering (VQA) system. Although very recent works also tried the explicit compositional processes to assemble multiple sub-tasks embedded in the questions, their models heavily rely on the annotations or hand-crafted rules to obtain valid reasoning layout, leading to either heavy labor or poor performance on composition reasoning. In this paper, to enable global context reasoning for better aligning image and language domains in diverse and unrestricted cases, we propose a novel reasoning network called Adversarial Composition Modular Network (ACMN). This network comprises of two collaborative modules: i) an adversarial attention module to exploit the local visual evidence for each word parsed from the question; ii) a residual composition module to compose the previously mined evidence. Given a dependency parse tree for each question, the adversarial attention module progressively discovers salient regions of one word by densely combining regions of child word nodes in an adversarial manner. Then residual composition module merges the hidden representations of an arbitrary number of children through sum pooling and residual connection. Our ACMN is thus capable of building an interpretable VQA system that gradually dives the image cues following a question-driven reasoning route and makes global reasoning by incorporating the learned knowledge of all attention modules in a principled manner. Experiments on relational datasets demonstrate the superiority of our ACMN and visualization results show the explainable capability of our reasoning system.
Many vision and language tasks require commonsense reasoning beyond data-driven image and natural language processing. Here we adopt Visual Question Answering (VQA) as an example task, where a system is expected to answer a question in natural language about an image. Current state-of-the-art systems attempted to solve the task using deep neural architectures and achieved promising performance. However, the resulting systems are generally opaque and they struggle in understanding questions for which extra knowledge is required. In this paper, we present an explicit reasoning layer on top of a set of penultimate neural network based systems. The reasoning layer enables reasoning and answering questions where additional knowledge is required, and at the same time provides an interpretable interface to the end users. Specifically, the reasoning layer adopts a Probabilistic Soft Logic (PSL) based engine to reason over a basket of inputs: visual relations, the semantic parse of the question, and background ontological knowledge from word2vec and ConceptNet. Experimental analysis of the answers and the key evidential predicates generated on the VQA dataset validate our approach.
A vexing problem in artificial intelligence is reasoning about events that occur in complex, changing visual stimuli such as in video analysis or game play. Inspired by a rich tradition of visual reasoning and memory in cognitive psychology and neuroscience, we developed an artificial, configurable visual question and answer dataset (COG) to parallel experiments in humans and animals. COG is much simpler than the general problem of video analysis, yet it addresses many of the problems relating to visual and logical reasoning and memory -- problems that remain challenging for modern deep learning architectures. We additionally propose a deep learning architecture that performs competitively on other diagnostic VQA datasets (i.e. CLEVR) as well as easy settings of the COG dataset. However, several settings of COG result in datasets that are progressively more challenging to learn. After training, the network can zero-shot generalize to many new tasks. Preliminary analyses of the network architectures trained on COG demonstrate that the network accomplishes the task in a manner interpretable to humans.
The robust and efficient recognition of visual relations in images is a hallmark of biological vision. Here, we argue that, despite recent progress in visual recognition, modern machine vision algorithms are severely limited in their ability to learn visual relations. Through controlled experiments, we demonstrate that visual-relation problems strain convolutional neural networks (CNNs). The networks eventually break altogether when rote memorization becomes impossible such as when the intra-class variability exceeds their capacity. We further show that another type of feedforward network, called a relational network (RN), which was shown to successfully solve seemingly difficult visual question answering (VQA) problems on the CLEVR datasets, suffers similar limitations. Motivated by the comparable success of biological vision, we argue that feedback mechanisms including working memory and attention are the key computational components underlying abstract visual reasoning.
Visual Question Answering (VQA) is a novel problem domain where multi-modal inputs must be processed in order to solve the task given in the form of a natural language. As the solutions inherently require to combine visual and natural language processing with abstract reasoning, the problem is considered as AI-complete. Recent advances indicate that using high-level, abstract facts extracted from the inputs might facilitate reasoning. Following that direction we decided to develop a solution combining state-of-the-art object detection and reasoning modules. The results, achieved on the well-balanced CLEVR dataset, confirm the promises and show significant, few percent improvements of accuracy on the complex "counting" task.
Reasoning about the relationships between object pairs in images is a crucial task for holistic scene understanding. Most of the existing works treat this task as a pure visual classification task: each type of relationship or phrase is classified as a relation category based on the extracted visual features. However, each kind of relationships has a wide variety of object combination and each pair of objects has diverse interactions. Obtaining sufficient training samples for all possible relationship categories is difficult and expensive. In this work, we propose a natural language guided framework to tackle this problem. We propose to use a generic bi-directional recurrent neural network to predict the semantic connection between the participating objects in the relationship from the aspect of natural language. The proposed simple method achieves the state-of-the-art on the Visual Relationship Detection (VRD) and Visual Genome datasets, especially when predicting unseen relationships (e.g. recall improved from 76.42% to 89.79% on VRD zero-shot testing set).