亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The way the media presents events can significantly affect public perception, which in turn can alter people's beliefs and views. Media bias describes a one-sided or polarizing perspective on a topic. This article summarizes the research on computational methods to detect media bias by systematically reviewing 3140 research papers published between 2019 and 2022. To structure our review and support a mutual understanding of bias across research domains, we introduce the Media Bias Taxonomy, which provides a coherent overview of the current state of research on media bias from different perspectives. We show that media bias detection is a highly active research field, in which transformer-based classification approaches have led to significant improvements in recent years. These improvements include higher classification accuracy and the ability to detect more fine-granular types of bias. However, we have identified a lack of interdisciplinarity in existing projects, and a need for more awareness of the various types of media bias to support methodologically thorough performance evaluations of media bias detection systems. Concluding from our analysis, we see the integration of recent machine learning advancements with reliable and diverse bias assessment strategies from other research areas as the most promising area for future research contributions in the field.

相關內容

Recommendation algorithms play a pivotal role in shaping our media choices, which makes it crucial to comprehend their long-term impact on user behavior. These algorithms are often linked to two critical outcomes: homogenization, wherein users consume similar content despite disparate underlying preferences, and the filter bubble effect, wherein individuals with differing preferences only consume content aligned with their preferences (without much overlap with other users). Prior research assumes a trade-off between homogenization and filter bubble effects and then shows that personalized recommendations mitigate filter bubbles by fostering homogenization. However, because of this assumption of a tradeoff between these two effects, prior work cannot develop a more nuanced view of how recommendation systems may independently impact homogenization and filter bubble effects. We develop a more refined definition of homogenization and the filter bubble effect by decomposing them into two key metrics: how different the average consumption is between users (inter-user diversity) and how varied an individual's consumption is (intra-user diversity). We then use a novel agent-based simulation framework that enables a holistic view of the impact of recommendation systems on homogenization and filter bubble effects. Our simulations show that traditional recommendation algorithms (based on past behavior) mainly reduce filter bubbles by affecting inter-user diversity without significantly impacting intra-user diversity. Building on these findings, we introduce two new recommendation algorithms that take a more nuanced approach by accounting for both types of diversity.

We consider the task of causal imputation, where we aim to predict the outcomes of some set of actions across a wide range of possible contexts. As a running example, we consider predicting how different drugs affect cells from different cell types. We study the index-only setting, where the actions and contexts are categorical variables with a finite number of possible values. Even in this simple setting, a practical challenge arises, since often only a small subset of possible action-context pairs have been studied. Thus, models must extrapolate to novel action-context pairs, which can be framed as a form of matrix completion with rows indexed by actions, columns indexed by contexts, and matrix entries corresponding to outcomes. We introduce a novel SCM-based model class, where the outcome is expressed as a counterfactual, actions are expressed as interventions on an instrumental variable, and contexts are defined based on the initial state of the system. We show that, under a linearity assumption, this setup induces a latent factor model over the matrix of outcomes, with an additional fixed effect term. To perform causal prediction based on this model class, we introduce simple extension to the Synthetic Interventions estimator (Agarwal et al., 2020). We evaluate several matrix completion approaches on the PRISM drug repurposing dataset, showing that our method outperforms all other considered matrix completion approaches.

Large Multimodal Models (LMMs) often suffer from multimodal hallucinations, wherein they may create content that is not present in the visual inputs. In this paper, we explore a new angle of this issue: overly detailed training data hinders the model's ability to timely terminate generation, leading to continued outputs beyond visual perception limits. By investigating how the model decides to terminate generation with EOS, the special end-of-sentence token, we find that the model assesses the completeness of the entire sequence by comparing the generated text with the image. This observation suggests that the model possesses an inherent potential of making proper EOS decisions based on its visual perception to avoid overly lengthy outputs. To take advantage of such potential, we explore two methods to mitigate multimodal hallucinations: a training objective that enables the model to reduce hallucinations by learning from regular instruction data, and a data filtering strategy to prevent harmful training data from exacerbating model hallucinations. Both methods significantly improve the hallucination performance of LMMs, without requiring any additional data or knowledge.

We often verbally express emotions in a multifaceted manner, they may vary in their intensities and may be expressed not just as a single but as a mixture of emotions. This wide spectrum of emotions is well-studied in the structural model of emotions, which represents variety of emotions as derivative products of primary emotions with varying degrees of intensity. In this paper, we propose an emotional text-to-speech design to simulate a wider spectrum of emotions grounded on the structural model. Our proposed design, Daisy-TTS, incorporates a prosody encoder to learn emotionally-separable prosody embedding as a proxy for emotion. This emotion representation allows the model to simulate: (1) Primary emotions, as learned from the training samples, (2) Secondary emotions, as a mixture of primary emotions, (3) Intensity-level, by scaling the emotion embedding, and (4) Emotions polarity, by negating the emotion embedding. Through a series of perceptual evaluations, Daisy-TTS demonstrated overall higher emotional speech naturalness and emotion perceiveability compared to the baseline.

Recommender systems have been widely used for various scenarios, such as e-commerce, news, and music, providing online contents to help and enrich users' daily life. Different scenarios hold distinct and unique characteristics, calling for domain-specific investigations and corresponding designed recommender systems. Therefore, in this paper, we focus on food delivery recommendations to unveil unique features in this domain, where users order food online and enjoy their meals shortly after delivery. We first conduct an in-depth analysis on food delivery datasets. The analysis shows that repeat orders are prevalent for both users and stores, and situations' differently influence repeat and exploration consumption in the food delivery recommender systems. Moreover, we revisit the ability of existing situation-aware methods for repeat and exploration recommendations respectively, and find them unable to effectively solve both tasks simultaneously. Based on the analysis and experiments, we have designed two separate recommendation models -- ReRec for repeat orders and ExpRec for exploration orders; both are simple in their design and computation. We conduct experiments on three real-world food delivery datasets, and our proposed models outperform various types of baselines on repeat, exploration, and combined recommendation tasks. This paper emphasizes the importance of dedicated analyses and methods for domain-specific characteristics for the recommender system studies.

Despite the critical need to align search targets with users' intention, retrievers often only prioritize query information without delving into the users' intended search context. Enhancing the capability of retrievers to understand intentions and preferences of users, akin to language model instructions, has the potential to yield more aligned search targets. Prior studies restrict the application of instructions in information retrieval to a task description format, neglecting the broader context of diverse and evolving search scenarios. Furthermore, the prevailing benchmarks utilized for evaluation lack explicit tailoring to assess instruction-following ability, thereby hindering progress in this field. In response to these limitations, we propose a novel benchmark,INSTRUCTIR, specifically designed to evaluate instruction-following ability in information retrieval tasks. Our approach focuses on user-aligned instructions tailored to each query instance, reflecting the diverse characteristics inherent in real-world search scenarios. Through experimental analysis, we observe that retrievers fine-tuned to follow task-style instructions, such as INSTRUCTOR, can underperform compared to their non-instruction-tuned counterparts. This underscores potential overfitting issues inherent in constructing retrievers trained on existing instruction-aware retrieval datasets.

In the rapidly evolving landscape of social media, the introduction of new emojis in Unicode release versions presents a structured opportunity to explore digital language evolution. Analyzing a large dataset of sampled English tweets, we examine how newly released emojis gain traction and evolve in meaning. We find that community size of early adopters and emoji semantics are crucial in determining their popularity. Certain emojis experienced notable shifts in the meanings and sentiment associations during the diffusion process. Additionally, we propose a novel framework utilizing language models to extract words and pre-existing emojis with semantically similar contexts, which enhances interpretation of new emojis. The framework demonstrates its effectiveness in improving sentiment classification performance by substituting unknown new emojis with familiar ones. This study offers a new perspective in understanding how new language units are adopted, adapted, and integrated into the fabric of online communication.

Text-based misinformation permeates online discourses, yet evidence of people's ability to discern truth from such deceptive textual content is scarce. We analyze a novel TV game show data where conversations in a high-stake environment between individuals with conflicting objectives result in lies. We investigate the manifestation of potentially verifiable language cues of deception in the presence of objective truth, a distinguishing feature absent in previous text-based deception datasets. We show that there exists a class of detectors (algorithms) that have similar truth detection performance compared to human subjects, even when the former accesses only the language cues while the latter engages in conversations with complete access to all potential sources of cues (language and audio-visual). Our model, built on a large language model, employs a bottleneck framework to learn discernible cues to determine truth, an act of reasoning in which human subjects often perform poorly, even with incentives. Our model detects novel but accurate language cues in many cases where humans failed to detect deception, opening up the possibility of humans collaborating with algorithms and ameliorating their ability to detect the truth.

Advances in artificial intelligence (AI) have enabled unprecedented capabilities, yet innovation teams struggle when envisioning AI concepts. Data science teams think of innovations users do not want, while domain experts think of innovations that cannot be built. A lack of effective ideation seems to be a breakdown point. How might multidisciplinary teams identify buildable and desirable use cases? This paper presents a first hand account of ideating AI concepts to improve critical care medicine. As a team of data scientists, clinicians, and HCI researchers, we conducted a series of design workshops to explore more effective approaches to AI concept ideation and problem formulation. We detail our process, the challenges we encountered, and practices and artifacts that proved effective. We discuss the research implications for improved collaboration and stakeholder engagement, and discuss the role HCI might play in reducing the high failure rate experienced in AI innovation.

This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.

北京阿比特科技有限公司