亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This scientific report presents a novel methodology for the early prediction of important political events using News datasets. The methodology leverages natural language processing, graph theory, clique analysis, and semantic relationships to uncover hidden predictive signals within the data. Initially, we designed a preliminary version of the method and tested it on a few events. This analysis revealed limitations in the initial research phase. We then enhanced the model in two key ways: first, we added a filtration step to only consider politically relevant news before further processing; second, we adjusted the input features to make the alert system more sensitive to significant spikes in the data. After finalizing the improved methodology, we tested it on eleven events including US protests, the Ukraine war, and French protests. Results demonstrate the superiority of our approach compared to baseline methods. Through targeted refinements, our model can now provide earlier and more accurate predictions of major political events based on subtle patterns in news data.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 優化器 · 設計 · Tensor · 估計/估計量 ·
2024 年 5 月 9 日

This paper contributes to the study of optimal experimental design for Bayesian inverse problems governed by partial differential equations (PDEs). We derive estimates for the parametric regularity of multivariate double integration problems over high-dimensional parameter and data domains arising in Bayesian optimal design problems. We provide a detailed analysis for these double integration problems using two approaches: a full tensor product and a sparse tensor product combination of quasi-Monte Carlo (QMC) cubature rules over the parameter and data domains. Specifically, we show that the latter approach significantly improves the convergence rate, exhibiting performance comparable to that of QMC integration of a single high-dimensional integral. Furthermore, we numerically verify the predicted convergence rates for an elliptic PDE problem with an unknown diffusion coefficient in two spatial dimensions, offering empirical evidence supporting the theoretical results and highlighting practical applicability.

Whisper is a state-of-the-art automatic speech recognition (ASR) model (Radford et al., 2022). Although Swiss German dialects are allegedly not part of Whisper's training data, preliminary experiments showed that Whisper can transcribe Swiss German quite well, with the output being a speech translation into Standard German. To gain a better understanding of Whisper's performance on Swiss German, we systematically evaluate it using automatic, qualitative, and human evaluation. We test its performance on three existing test sets: SwissDial (Dogan-Sch\"onberger et al., 2021), STT4SG-350 (Pl\"uss et al., 2023), and Swiss Parliaments Corpus (Pl\"uss et al., 2021). In addition, we create a new test set for this work, based on short mock clinical interviews. For automatic evaluation, we used word error rate (WER) and BLEU. In the qualitative analysis, we discuss Whisper's strengths and weaknesses and anylyze some output examples. For the human evaluation, we conducted a survey with 28 participants who were asked to evaluate Whisper's performance. All of our evaluations suggest that Whisper is a viable ASR system for Swiss German, so long as the Standard German output is desired.

Frequently Asked Questions (FAQs) refer to the most common inquiries about specific content. They serve as content comprehension aids by simplifying topics and enhancing understanding through succinct presentation of information. In this paper, we address FAQ generation as a well-defined Natural Language Processing task through the development of an end-to-end system leveraging text-to-text transformation models. We present a literature review covering traditional question-answering systems, highlighting their limitations when applied directly to the FAQ generation task. We propose a system capable of building FAQs from textual content tailored to specific domains, enhancing their accuracy and relevance. We utilise self-curated algorithms to obtain an optimal representation of information to be provided as input and also to rank the question-answer pairs to maximise human comprehension. Qualitative human evaluation showcases the generated FAQs as well-constructed and readable while also utilising domain-specific constructs to highlight domain-based nuances and jargon in the original content.

This paper explores the interplay between statistics and generative artificial intelligence. Generative statistics, an integral part of the latter, aims to construct models that can {\it generate} efficiently and meaningfully new data across the whole of the (usually high dimensional) sample space, e.g. a new photo. Within it, the gradient-based approach is a current favourite that exploits effectively, for the above purpose, the information contained in the observed sample, e.g. an old photo. However, often there are missing data in the observed sample, e.g. missing bits in the old photo. To handle this situation, we have proposed a gradient-based algorithm for generative modelling. More importantly, our paper underpins rigorously this powerful approach by introducing a new F-entropy that is related to Fisher's divergence. (The F-entropy is also of independent interest.) The underpinning has enabled the gradient-based approach to expand its scope. For example, it can now provide a tool for Possible future projects include discrete data and Bayesian variational inference.

The digital transformation leads to fundamental change in organizational structures. To be able to apply new technologies not only selectively, processes in companies must be revised and functional units must be viewed holistically, especially with regard to interfaces. Target-oriented management decisions are made, among other things, on the basis of risk management and compliance in combination with the internal control system as governance functions. The effectiveness and efficiency of these functions is decisive to follow guidelines and regulatory requirements as well as for the evaluation of alternative options for acting with regard to activities of companies. GRC (Governance, Risk and Compliance) means an integrated governance-approach, in which the mentioned governance functions are interlinked and not separated from each other. Methods of artificial intelligence represents an important technology of digital transformation. This technology, which offers a broad range of methods such as machine learning, artificial neural networks, natural language processing or deep learning, offers a lot of possible applications in many business areas from purchasing to production or customer service. Artificial intelligence is also being used in GRC, for example for processing and analysis of unstructured data sets. This study contains the results of a survey conducted in 2021 to identify and analyze the potential applications of artificial intelligence in GRC.

Satellite imagery has played an increasingly important role in post-disaster building damage assessment. Unfortunately, current methods still rely on manual visual interpretation, which is often time-consuming and can cause very low accuracy. To address the limitations of manual interpretation, there has been a significant increase in efforts to automate the process. We present a solution that performs the two most important tasks in building damage assessment, segmentation and classification, through deep-learning models. We show our results submitted as part of the xView2 Challenge, a competition to design better models for identifying buildings and their damage level after exposure to multiple kinds of natural disasters. Our best model couples a building identification semantic segmentation convolutional neural network (CNN) to a building damage classification CNN, with a combined F1 score of 0.66, surpassing the xView2 challenge baseline F1 score of 0.28. We find that though our model was able to identify buildings with relatively high accuracy, building damage classification across various disaster types is a difficult task due to the visual similarity between different damage levels and different damage distribution between disaster types, highlighting the fact that it may be important to have a probabilistic prior estimate regarding disaster damage in order to obtain accurate predictions.

Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

This paper reports Deep LOGISMOS approach to 3D tumor segmentation by incorporating boundary information derived from deep contextual learning to LOGISMOS - layered optimal graph image segmentation of multiple objects and surfaces. Accurate and reliable tumor segmentation is essential to tumor growth analysis and treatment selection. A fully convolutional network (FCN), UNet, is first trained using three adjacent 2D patches centered at the tumor, providing contextual UNet segmentation and probability map for each 2D patch. The UNet segmentation is then refined by Gaussian Mixture Model (GMM) and morphological operations. The refined UNet segmentation is used to provide the initial shape boundary to build a segmentation graph. The cost for each node of the graph is determined by the UNet probability maps. Finally, a max-flow algorithm is employed to find the globally optimal solution thus obtaining the final segmentation. For evaluation, we applied the method to pancreatic tumor segmentation on a dataset of 51 CT scans, among which 30 scans were used for training and 21 for testing. With Deep LOGISMOS, DICE Similarity Coefficient (DSC) and Relative Volume Difference (RVD) reached 83.2+-7.8% and 18.6+-17.4% respectively, both are significantly improved (p<0.05) compared with contextual UNet and/or LOGISMOS alone.

北京阿比特科技有限公司