Deception and persuasion play a critical role in long-horizon dialogues between multiple parties, especially when the interests, goals, and motivations of the participants are not aligned. Such complex tasks pose challenges for current Large Language Models (LLM) as deception and persuasion can easily mislead them, especially in long-horizon multi-party dialogues. To this end, we explore the game of Avalon: The Resistance, a social deduction game in which players must determine each other's hidden identities to complete their team's objective. We introduce an online testbed and a dataset containing 20 carefully collected and labeled games among human players that exhibit long-horizon deception in a cooperative-competitive setting. We discuss the capabilities of LLMs to utilize deceptive long-horizon conversations between six human players to determine each player's goal and motivation. Particularly, we discuss the multimodal integration of the chat between the players and the game's state that grounds the conversation, providing further insights into the true player identities. We find that even current state-of-the-art LLMs do not reach human performance, making our dataset a compelling benchmark to investigate the decision-making and language-processing capabilities of LLMs. Our dataset and online testbed can be found at our project website: //sstepput.github.io/Avalon-NLU/
We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalised regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually-interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language model embeddings are evaluated. We show that topics derived by the pipeline are consistent with legal doctrines in both areas and can be useful in other related legal analysis tasks.
The emergence of ChatGPT and other large language models (LLMs) has greatly increased interest in utilizing LLMs as therapists to support individuals struggling with mental health challenges. However, due to the lack of systematic studies, our understanding of how LLM therapists behave, i.e., ways in which they respond to clients, is significantly limited. Understanding their behavior across a wide range of clients and situations is crucial to accurately assess their capabilities and limitations in the high-risk setting of mental health, where undesirable behaviors can lead to severe consequences. In this paper, we propose BOLT, a novel computational framework to study the conversational behavior of LLMs when employed as therapists. We develop an in-context learning method to quantitatively measure the behavior of LLMs based on 13 different psychotherapy techniques including reflections, questions, solutions, normalizing, and psychoeducation. Subsequently, we compare the behavior of LLM therapists against that of high- and low-quality human therapy, and study how their behavior can be modulated to better reflect behaviors observed in high-quality therapy. Our analysis of GPT and Llama-variants reveals that these LLMs often resemble behaviors more commonly exhibited in low-quality therapy rather than high-quality therapy, such as offering a higher degree of problem-solving advice when clients share emotions, which is against typical recommendations. At the same time, unlike low-quality therapy, LLMs reflect significantly more upon clients' needs and strengths. Our analysis framework suggests that despite the ability of LLMs to generate anecdotal examples that appear similar to human therapists, LLM therapists are currently not fully consistent with high-quality care, and thus require additional research to ensure quality care.
Scientists are adopting new approaches to scale up their activities and goals. Progress in neurotechnologies, artificial intelligence, automation, and tools for collaboration promises new bursts of discoveries. However, compared to other disciplines and the industry, neuroscience laboratories have been slow to adopt key technologies to support collaboration, reproducibility, and automation. Drawing on progress in other fields, we define a roadmap for implementing automated research workflows for diverse research teams. We propose establishing a five-level capability maturity model for operations in neuroscience research. Achieving higher levels of operational maturity requires new technology-enabled methodologies, which we describe as ``SciOps''. The maturity model provides guidelines for evaluating and upgrading operations in multidisciplinary neuroscience teams.
The rise in additive manufacturing comes with unique opportunities and challenges. Rapid changes to part design and massive part customization distinctive to 3D-Print (3DP) can be easily achieved. Customized parts that are unique, yet exhibit similar features such as dental moulds, shoe insoles, or engine vanes could be industrially manufactured with 3DP. However, the opportunity for massive part customization comes with unique challenges for the existing production paradigm of robotics applications, as the current robotics paradigm for part identification and pose refinement is repetitive, where data-driven and object-dependent approaches are often used. Thus, a bottleneck exists in robotics applications for 3DP parts where massive customization is involved, as it is difficult for feature-based deep learning approaches to distinguish between similar parts such as shoe insoles belonging to different people. As such, we propose a method that augments patterns on 3DP parts so that grasping, part identification, and pose refinement can be executed in one shot with a tactile gripper. We also experimentally evaluate our approach from three perspectives, including real insertion tasks that mimic robotic sorting and packing, and achieved excellent classification results, a high insertion success rate of 95%, and a sub-millimeter pose refinement accuracy.
Approximate Computing (AxC) techniques have become increasingly popular in trading off accuracy for performance gains in various applications. Selecting the best AxC techniques for a given application is challenging. Among proposed approaches for exploring the design space, Machine Learning approaches such as Reinforcement Learning (RL) show promising results. In this paper, we proposed an RL-based multi-objective Design Space Exploration strategy to find the approximate versions of the application that balance accuracy degradation and power and computation time reduction. Our experimental results show a good trade-off between accuracy degradation and decreased power and computation time for some benchmarks.
For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.
The dominating NLP paradigm of training a strong neural predictor to perform one task on a specific dataset has led to state-of-the-art performance in a variety of applications (eg. sentiment classification, span-prediction based question answering or machine translation). However, it builds upon the assumption that the data distribution is stationary, ie. that the data is sampled from a fixed distribution both at training and test time. This way of training is inconsistent with how we as humans are able to learn from and operate within a constantly changing stream of information. Moreover, it is ill-adapted to real-world use cases where the data distribution is expected to shift over the course of a model's lifetime. The first goal of this thesis is to characterize the different forms this shift can take in the context of natural language processing, and propose benchmarks and evaluation metrics to measure its effect on current deep learning architectures. We then proceed to take steps to mitigate the effect of distributional shift on NLP models. To this end, we develop methods based on parametric reformulations of the distributionally robust optimization framework. Empirically, we demonstrate that these approaches yield more robust models as demonstrated on a selection of realistic problems. In the third and final part of this thesis, we explore ways of efficiently adapting existing models to new domains or tasks. Our contribution to this topic takes inspiration from information geometry to derive a new gradient update rule which alleviate catastrophic forgetting issues during adaptation.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.
Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.
With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.