亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Extremely large-scale multiple-input-multiple-output (XL-MIMO), which offers vast spatial degrees of freedom, has emerged as a potentially pivotal enabling technology for the sixth generation (6G) of wireless mobile networks. With its growing significance, both opportunities and challenges are concurrently manifesting. This paper presents a comprehensive survey of research on XL-MIMO wireless systems. In particular, we introduce four XL-MIMO hardware architectures: uniform linear array (ULA)-based XL-MIMO, uniform planar array (UPA)-based XL-MIMO utilizing either patch antennas or point antennas, and continuous aperture (CAP)-based XL-MIMO. We comprehensively analyze and discuss their characteristics and interrelationships. Following this, we examine exact and approximate near-field channel models for XL-MIMO. Given the distinct electromagnetic properties of near-field communications, we present a range of channel models to demonstrate the benefits of XL-MIMO. We further motivate and discuss low-complexity signal processing schemes to promote the practical implementation of XL-MIMO. Furthermore, we explore the interplay between XL-MIMO and other emergent 6G technologies. Finally, we outline several compelling research directions for future XL-MIMO wireless communication systems.

相關內容

信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li)期刊采(cai)用(yong)了理(li)(li)(li)(li)(li)(li)(li)論與實(shi)踐的(de)(de)各個(ge)方面(mian)的(de)(de)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li)。它(ta)以原始研究(jiu)工作,教程和(he)(he)評論文章(zhang)以及實(shi)際發展情況為特色。它(ta)旨(zhi)在(zai)將(jiang)知識(shi)和(he)(he)經驗快(kuai)速傳播給(gei)從事信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li)研究(jiu),開發或(huo)實(shi)際應用(yong)的(de)(de)工程師(shi)和(he)(he)科學家。該期刊涵蓋的(de)(de)主題領域包括:信(xin)(xin)號理(li)(li)(li)(li)(li)(li)(li)論;隨(sui)機過程; 檢測和(he)(he)估計;光譜分(fen)析;過濾;信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li)系統;軟件開發;圖像處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li); 模式識(shi)別; 光信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);數字信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li); 多維信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);通信(xin)(xin)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);生物(wu)醫(yi)學信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);地球物(wu)理(li)(li)(li)(li)(li)(li)(li)和(he)(he)天體(ti)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);地球資源(yuan)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);聲音和(he)(he)振動信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);數據(ju)處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li); 遙感; 信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li)技術(shu);雷達(da)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);聲納(na)信(xin)(xin)號處(chu)(chu)(chu)(chu)理(li)(li)(li)(li)(li)(li)(li);工業應用(yong);新的(de)(de)應用(yong)程序。 官(guan)網地址:

The aim of latent variable disentanglement is to infer the multiple informative latent representations that lie behind a data generation process and is a key factor in controllable data generation. In this paper, we propose a deep neural network-based self-supervised learning method to infer the disentangled rhythmic and harmonic representations behind music audio generation. We train a variational autoencoder that generates an audio mel-spectrogram from two latent features representing the rhythmic and harmonic content. In the training phase, the variational autoencoder is trained to reconstruct the input mel-spectrogram given its pitch-shifted version. At each forward computation in the training phase, a vector rotation operation is applied to one of the latent features, assuming that the dimensions of the feature vectors are related to pitch intervals. Therefore, in the trained variational autoencoder, the rotated latent feature represents the pitch-related information of the mel-spectrogram, and the unrotated latent feature represents the pitch-invariant information, i.e., the rhythmic content. The proposed method was evaluated using a predictor-based disentanglement metric on the learned features. Furthermore, we demonstrate its application to the automatic generation of music remixes.

Pneumonia remains a significant cause of child mortality, particularly in developing countries where resources and expertise are limited. The automated detection of Pneumonia can greatly assist in addressing this challenge. In this research, an XOR based Particle Swarm Optimization (PSO) is proposed to select deep features from the second last layer of a RegNet model, aiming to improve the accuracy of the CNN model on Pneumonia detection. The proposed XOR PSO algorithm offers simplicity by incorporating just one hyperparameter for initialization, and each iteration requires minimal computation time. Moreover, it achieves a balance between exploration and exploitation, leading to convergence on a suitable solution. By extracting 163 features, an impressive accuracy level of 98% was attained which demonstrates comparable accuracy to previous PSO-based methods. The source code of the proposed method is available in the GitHub repository.

Current backdoor attacks against federated learning (FL) strongly rely on universal triggers or semantic patterns, which can be easily detected and filtered by certain defense mechanisms such as norm clipping, comparing parameter divergences among local updates. In this work, we propose a new stealthy and robust backdoor attack with flexible triggers against FL defenses. To achieve this, we build a generative trigger function that can learn to manipulate the benign samples with an imperceptible flexible trigger pattern and simultaneously make the trigger pattern include the most significant hidden features of the attacker-chosen label. Moreover, our trigger generator can keep learning and adapt across different rounds, allowing it to adjust to changes in the global model. By filling the distinguishable difference (the mapping between the trigger pattern and target label), we make our attack naturally stealthy. Extensive experiments on real-world datasets verify the effectiveness and stealthiness of our attack compared to prior attacks on decentralized learning framework with eight well-studied defenses.

Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data and the improvement in practical applications. However, many of these models prioritize high utility performance, such as accuracy, with a lack of privacy consideration, which is a major concern in modern society where privacy attacks are rampant. To address this issue, researchers have started to develop privacy-preserving GNNs. Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain. In this survey, we aim to address this gap by summarizing the attacks on graph data according to the targeted information, categorizing the privacy preservation techniques in GNNs, and reviewing the datasets and applications that could be used for analyzing/solving privacy issues in GNNs. We also outline potential directions for future research in order to build better privacy-preserving GNNs.

With the widespread use of large artificial intelligence (AI) models such as ChatGPT, AI-generated content (AIGC) has garnered increasing attention and is leading a paradigm shift in content creation and knowledge representation. AIGC uses generative large AI algorithms to assist or replace humans in creating massive, high-quality, and human-like content at a faster pace and lower cost, based on user-provided prompts. Despite the recent significant progress in AIGC, security, privacy, ethical, and legal challenges still need to be addressed. This paper presents an in-depth survey of working principles, security and privacy threats, state-of-the-art solutions, and future challenges of the AIGC paradigm. Specifically, we first explore the enabling technologies, general architecture of AIGC, and discuss its working modes and key characteristics. Then, we investigate the taxonomy of security and privacy threats to AIGC and highlight the ethical and societal implications of GPT and AIGC technologies. Furthermore, we review the state-of-the-art AIGC watermarking approaches for regulatable AIGC paradigms regarding the AIGC model and its produced content. Finally, we identify future challenges and open research directions related to AIGC.

Maritime activities represent a major domain of economic growth with several emerging maritime Internet of Things use cases, such as smart ports, autonomous navigation, and ocean monitoring systems. The major enabler for this exciting ecosystem is the provision of broadband, low-delay, and reliable wireless coverage to the ever-increasing number of vessels, buoys, platforms, sensors, and actuators. Towards this end, the integration of unmanned aerial vehicles (UAVs) in maritime communications introduces an aerial dimension to wireless connectivity going above and beyond current deployments, which are mainly relying on shore-based base stations with limited coverage and satellite links with high latency. Considering the potential of UAV-aided wireless communications, this survey presents the state-of-the-art in UAV-aided maritime communications, which, in general, are based on both conventional optimization and machine-learning-aided approaches. More specifically, relevant UAV-based network architectures are discussed together with the role of their building blocks. Then, physical-layer, resource management, and cloud/edge computing and caching UAV-aided solutions in maritime environments are discussed and grouped based on their performance targets. Moreover, as UAVs are characterized by flexible deployment with high re-positioning capabilities, studies on UAV trajectory optimization for maritime applications are thoroughly discussed. In addition, aiming at shedding light on the current status of real-world deployments, experimental studies on UAV-aided maritime communications are presented and implementation details are given. Finally, several important open issues in the area of UAV-aided maritime communications are given, related to the integration of sixth generation (6G) advancements.

A fundamental goal of scientific research is to learn about causal relationships. However, despite its critical role in the life and social sciences, causality has not had the same importance in Natural Language Processing (NLP), which has traditionally placed more emphasis on predictive tasks. This distinction is beginning to fade, with an emerging area of interdisciplinary research at the convergence of causal inference and language processing. Still, research on causality in NLP remains scattered across domains without unified definitions, benchmark datasets and clear articulations of the remaining challenges. In this survey, we consolidate research across academic areas and situate it in the broader NLP landscape. We introduce the statistical challenge of estimating causal effects, encompassing settings where text is used as an outcome, treatment, or as a means to address confounding. In addition, we explore potential uses of causal inference to improve the performance, robustness, fairness, and interpretability of NLP models. We thus provide a unified overview of causal inference for the computational linguistics community.

With the advances of data-driven machine learning research, a wide variety of prediction problems have been tackled. It has become critical to explore how machine learning and specifically deep learning methods can be exploited to analyse healthcare data. A major limitation of existing methods has been the focus on grid-like data; however, the structure of physiological recordings are often irregular and unordered which makes it difficult to conceptualise them as a matrix. As such, graph neural networks have attracted significant attention by exploiting implicit information that resides in a biological system, with interactive nodes connected by edges whose weights can be either temporal associations or anatomical junctions. In this survey, we thoroughly review the different types of graph architectures and their applications in healthcare. We provide an overview of these methods in a systematic manner, organized by their domain of application including functional connectivity, anatomical structure and electrical-based analysis. We also outline the limitations of existing techniques and discuss potential directions for future research.

Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB). Recently, a large number of studies focus on semantically or syntactically complicated questions. In this paper, we elaborately summarize the typical challenges and solutions for complex KBQA. We begin with introducing the background about the KBQA task. Next, we present the two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods. We then review the advanced methods comprehensively from the perspective of the two categories. Specifically, we explicate their solutions to the typical challenges. Finally, we conclude and discuss some promising directions for future research.

The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.

北京阿比特科技有限公司