亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

How can AI enhance creative coding experiences for families? This study explores the potential of large language models (LLMs) in helping families with creative coding using Scratch. Based on our previous user study involving a prototype AI assistant, we devised three evaluation scenarios to determine if LLMs could help families comprehend game code, debug programs, and generate new ideas for future projects. We utilized 22 Scratch projects for each scenario and generated responses from LLMs with and without practice tasks, resulting in 120 creative coding support scenario datasets. In addition, the authors independently evaluated their precision, pedagogical value, and age-appropriate language. Our findings show that LLMs achieved an overall success rate of more than 80\% on the different tasks and evaluation criteria. This research offers valuable information on using LLMs for creative family coding and presents design guidelines for future AI-supported coding applications. Our evaluation framework, together with our labeled evaluation data, is publicly available.

相關內容

代碼(Code)是專知網的一個重要知識資料文檔板塊,旨在整理收錄論文源代碼、復現代碼,經典工程代碼等,便于用戶查閱下載使用。

The rapid growth of machine translation (MT) systems has necessitated comprehensive studies to meta-evaluate evaluation metrics being used, which enables a better selection of metrics that best reflect MT quality. Unfortunately, most of the research focuses on high-resource languages, mainly English, the observations for which may not always apply to other languages. Indian languages, having over a billion speakers, are linguistically different from English, and to date, there has not been a systematic study of evaluating MT systems from English into Indian languages. In this paper, we fill this gap by creating an MQM dataset consisting of 7000 fine-grained annotations, spanning 5 Indian languages and 7 MT systems, and use it to establish correlations between annotator scores and scores obtained using existing automatic metrics. Our results show that pre-trained metrics, such as COMET, have the highest correlations with annotator scores. Additionally, we find that the metrics do not adequately capture fluency-based errors in Indian languages, and there is a need to develop metrics focused on Indian languages. We hope that our dataset and analysis will help promote further research in this area.

Vision-language tasks, such as VQA, SNLI-VE, and VCR are challenging because they require the model's reasoning ability to understand the semantics of the visual world and natural language. Supervised methods working for vision-language tasks have been well-studied. However, solving these tasks in a zero-shot setting is less explored. Since Contrastive Language-Image Pre-training (CLIP) has shown remarkable zero-shot performance on image-text matching, previous works utilized its strong zero-shot ability by converting vision-language tasks into an image-text matching problem, and they mainly consider global-level matching (e.g., the whole image or sentence). However, we find visual and textual fine-grained information, e.g., keywords in the sentence and objects in the image, can be fairly informative for semantics understanding. Inspired by this, we propose a unified framework to take advantage of the fine-grained information for zero-shot vision-language learning, covering multiple tasks such as VQA, SNLI-VE, and VCR. Our experiments show that our framework outperforms former zero-shot methods on VQA and achieves substantial improvement on SNLI-VE and VCR. Furthermore, our ablation studies confirm the effectiveness and generalizability of our proposed method. Code will be available at //github.com/ThreeSR/UniFine

Recently, there has been an increase in interest in evaluating large language models for emergent and dangerous capabilities. Importantly, agents could reason that in some scenarios their goal is better achieved if they are not turned off, which can lead to undesirable behaviors. In this paper, we investigate the potential of using toy textual scenarios to evaluate instrumental reasoning and shutdown avoidance in language models such as GPT-4 and Claude. Furthermore, we explore whether shutdown avoidance is merely a result of simple pattern matching between the dataset and the prompt or if it is a consistent behaviour across different environments and variations. We evaluated behaviours manually and also experimented with using language models for automatic evaluations, and these evaluations demonstrate that simple pattern matching is likely not the sole contributing factor for shutdown avoidance. This study provides insights into the behaviour of language models in shutdown avoidance scenarios and inspires further research on the use of textual scenarios for evaluations.

We present a human-in-the-loop evaluation framework for fact-checking novel misinformation claims and identifying social media messages that support them. Our approach extracts check-worthy claims, which are aggregated and ranked for review. Stance classifiers are then used to identify tweets supporting novel misinformation claims, which are further reviewed to determine whether they violate relevant policies. To demonstrate the feasibility of our approach, we develop a baseline system based on modern NLP methods for human-in-the-loop fact-checking in the domain of COVID-19 treatments. We make our data and detailed annotation guidelines available to support the evaluation of human-in-the-loop systems that identify novel misinformation directly from raw user-generated content.

Power analysis poses a significant threat to the security of cryptographic algorithms, as it can be leveraged to recover secret keys. While various software-based countermeasures exist to mitigate this non-invasive attack, they often involve a trade-off between time and space constraints. Techniques such as masking and shuffling, while effective, can noticeably impact execution speed and rely heavily on run-time random number generators. On the contrary, internally encoded implementations of block ciphers offer an alternative approach that does not rely on run-time random sources, but it comes with the drawback of requiring substantial memory space to accommodate lookup tables. Internal encoding, commonly employed in white-box cryptography, suffers from a security limitation as it does not effectively protect the secret key against statistical analysis. To overcome this weakness, this paper introduces a secure internal encoding method for an AES implementation. By addressing the root cause of vulnerabilities found in previous encoding methods, we propose a balanced encoding technique that aims to minimize the problematic correlation with key-dependent intermediate values. We analyze the potential weaknesses associated with the balanced encoding and present a method that utilizes complementary sets of lookup tables. In this approach, the size of the lookup tables is approximately 512KB, and the number of table lookups is 1,024. This is comparable to the table size of non-protected white-box AES-128 implementations, while requiring only half the number of lookups. By adopting this method, our aim is to introduce a non-masking technique that mitigates the vulnerability to statistical analysis present in current internally-encoded AES implementations.

Compiler bugs pose a significant threat to safety-critical applications, and promptly and effectively isolating these bugs is crucial for assuring the quality of compilers. However, the limited availability of debugging information on reported bugs complicates the compiler bug isolation task. Existing compiler bug isolation approaches typically convert the problem into a test program mutation problem, but they are still limited by ineffective mutation strategies or high human effort requirements. Drawing inspiration from the recent progress of pre-trained Large Language Models (LLMs), such as ChatGPT, in code generation, we propose a new approach named LLM4CBI to tame LLMs to generate effective test programs for compiler bug isolation. However, using LLMs directly for test program mutation may not yield the desired results due to the challenges associated with formulating precise prompts and selecting specialized prompts. To overcome the challenges, three new components are designed in LLM4CBI. (1) LLM4CBI utilizes a program complexity-guided prompt production component, which leverages data and control flow analysis to identify the most valuable variables and locations in programs for mutation. (2) LLM4CBI employs a memorized prompt selection component, which adopts reinforcement learning to select specialized prompts for mutating test programs continuously. (3) A test program validation component is proposed to select specialized feedback prompts to avoid repeating the same mistakes during the mutation process. Compared with the state-of-the-art approaches (DiWi and RecBi), our evaluation demonstrates the advantages of LLM4CBI: It isolates more bugs, ranging from 13.6% to 90.9% in various settings, than the other approaches. Additionally, we demonstrate that LLM4CBI is extensible, allowing for easy integration with other LLMs.

Audio source separation is often achieved by estimating the magnitude spectrogram of each source, and then applying a phase recovery (or spectrogram inversion) algorithm to retrieve time-domain signals. Typically, spectrogram inversion is treated as an optimization problem involving one or several terms in order to promote estimates that comply with a consistency property, a mixing constraint, and/or a target magnitude objective. Nonetheless, it is still unclear which set of constraints and problem formulation is the most appropriate in practice. In this paper, we design a general framework for deriving spectrogram inversion algorithm, which is based on formulating optimization problems by combining these objectives either as soft penalties or hard constraints. We solve these by means of algorithms that perform alternating projections on the subsets corresponding to each objective/constraint. Our framework encompasses existing techniques from the literature as well as novel algorithms. We investigate the potential of these approaches for a speech enhancement task. In particular, one of our novel algorithms outperforms other approaches in a realistic setting where the magnitudes are estimated beforehand using a neural network.

Deep learning techniques have led to remarkable breakthroughs in the field of generic object detection and have spawned a lot of scene-understanding tasks in recent years. Scene graph has been the focus of research because of its powerful semantic representation and applications to scene understanding. Scene Graph Generation (SGG) refers to the task of automatically mapping an image into a semantic structural scene graph, which requires the correct labeling of detected objects and their relationships. Although this is a challenging task, the community has proposed a lot of SGG approaches and achieved good results. In this paper, we provide a comprehensive survey of recent achievements in this field brought about by deep learning techniques. We review 138 representative works that cover different input modalities, and systematically summarize existing methods of image-based SGG from the perspective of feature extraction and fusion. We attempt to connect and systematize the existing visual relationship detection methods, to summarize, and interpret the mechanisms and the strategies of SGG in a comprehensive way. Finally, we finish this survey with deep discussions about current existing problems and future research directions. This survey will help readers to develop a better understanding of the current research status and ideas.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

北京阿比特科技有限公司