亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Galois self-orthogonal (SO) codes are generalizations of Euclidean and Hermitian SO codes. Algebraic geometry (AG) codes are the first known class of linear codes exceeding the Gilbert-Varshamov bound. Both of them have attracted much attention for their rich algebraic structures and wide applications in these years. In this paper, we consider them together and study Galois SO AG codes. A criterion for an AG code being Galois SO is presented. Based on this criterion, we construct several new classes of maximum distance separable (MDS) Galois SO AG codes from projective lines and several new classes of Galois SO AG codes from projective elliptic curves, hyper-elliptic curves and hermitian curves. In addition, we give an embedding method that allows us to obtain more MDS Galois SO codes from known MDS Galois SO AG codes.

相關內容

We propose an operator learning approach to accelerate geometric Markov chain Monte Carlo (MCMC) for solving infinite-dimensional Bayesian inverse problems (BIPs). While geometric MCMC employs high-quality proposals that adapt to posterior local geometry, it requires repeated computations of gradients and Hessians of the log-likelihood, which becomes prohibitive when the parameter-to-observable (PtO) map is defined through expensive-to-solve parametric partial differential equations (PDEs). We consider a delayed-acceptance geometric MCMC method driven by a neural operator surrogate of the PtO map, where the proposal exploits fast surrogate predictions of the log-likelihood and, simultaneously, its gradient and Hessian. To achieve a substantial speedup, the surrogate must accurately approximate the PtO map and its Jacobian, which often demands a prohibitively large number of PtO map samples via conventional operator learning methods. In this work, we present an extension of derivative-informed operator learning [O'Leary-Roseberry et al., J. Comput. Phys., 496 (2024)] that uses joint samples of the PtO map and its Jacobian. This leads to derivative-informed neural operator (DINO) surrogates that accurately predict the observables and posterior local geometry at a significantly lower training cost than conventional methods. Cost and error analysis for reduced basis DINO surrogates are provided. Numerical studies demonstrate that DINO-driven MCMC generates effective posterior samples 3--9 times faster than geometric MCMC and 60--97 times faster than prior geometry-based MCMC. Furthermore, the training cost of DINO surrogates breaks even compared to geometric MCMC after just 10--25 effective posterior samples.

The approach taken by Gheorghiu, Gu and Pym in their paper on giving a Base-extension Semantics for Intuitionistic Multiplicative Linear Logic is an interesting adaptation of the work of Sandqvist for IPL to the substructural setting. What is particularly interesting is how naturally the move to the substructural setting provided a semantics for the multiplicative fragment of intuitionistic linear logic. Whilst ultimately the Gheorghiu, Gu and Pym used their foundations to provide a semantics for bunched implication logic, it begs the question, what of the rest of intuitionistic linear logic? In this paper, I present just such a semantics. This is particularly of interest as this logic has as a connective the bang, a modal connective. Capturing the inferentialist content of formulas marked with this connective is particularly challenging and a discussion is dedicated to this at the end of the paper.

A Peskun ordering between two samplers, implying a dominance of one over the other, is known among the Markov chain Monte Carlo community for being a remarkably strong result. It is however also known for being a result that is notably difficult to establish. Indeed, one has to prove that the probability to reach a state $\mathbf{y}$ from a state $\mathbf{x}$, using a sampler, is greater than or equal to the probability using the other sampler, and this must hold for all pairs $(\mathbf{x}, \mathbf{y})$ such that $\mathbf{x} \neq \mathbf{y}$. We provide in this paper a weaker version that does not require an inequality between the probabilities for all these states: essentially, the dominance holds asymptotically, as a varying parameter grows without bound, as long as the states for which the probabilities are greater than or equal to belong to a mass-concentrating set. The weak ordering turns out to be useful to compare lifted samplers for partially-ordered discrete state-spaces with their Metropolis--Hastings counterparts. An analysis in great generality yields a qualitative conclusion: they asymptotically perform better in certain situations (and we are able to identify them), but not necessarily in others (and the reasons why are made clear). A quantitative study in a specific context of graphical-model simulation is also conducted.

Parametrized and random unitary (or orthogonal) $n$-qubit circuits play a central role in quantum information. As such, one could naturally assume that circuits implementing symplectic transformation would attract similar attention. However, this is not the case, as $\mathbb{SP}(d/2)$ -- the group of $d\times d$ unitary symplectic matrices -- has thus far been overlooked. In this work, we aim at starting to right this wrong. We begin by presenting a universal set of generators $\mathcal{G}$ for the symplectic algebra $i\mathfrak{sp}(d/2)$, consisting of one- and two-qubit Pauli operators acting on neighboring sites in a one-dimensional lattice. Here, we uncover two critical differences between such set, and equivalent ones for unitary and orthogonal circuits. Namely, we find that the operators in $\mathcal{G}$ cannot generate arbitrary local symplectic unitaries and that they are not translationally invariant. We then review the Schur-Weyl duality between the symplectic group and the Brauer algebra, and use tools from Weingarten calculus to prove that Pauli measurements at the output of Haar random symplectic circuits can converge to Gaussian processes. As a by-product, such analysis provides us with concentration bounds for Pauli measurements in circuits that form $t$-designs over $\mathbb{SP}(d/2)$. To finish, we present tensor-network tools to analyze shallow random symplectic circuits, and we use these to numerically show that computational-basis measurements anti-concentrate at logarithmic depth.

We study three kinetic Langevin samplers including the Euler discretization, the BU and the UBU splitting scheme. We provide contraction results in $L^1$-Wasserstein distance for non-convex potentials. These results are based on a carefully tailored distance function and an appropriate coupling construction. Additionally, the error in the $L^1$-Wasserstein distance between the true target measure and the invariant measure of the discretization scheme is bounded. To get an $\varepsilon$-accuracy in $L^1$-Wasserstein distance, we show complexity guarantees of order $\mathcal{O}(\sqrt{d}/\varepsilon)$ for the Euler scheme and $\mathcal{O}(d^{1/4}/\sqrt{\varepsilon})$ for the UBU scheme under appropriate regularity assumptions on the target measure. The results are applicable to interacting particle systems and provide bounds for sampling probability measures of mean-field type.

The main purpose of this paper is to design a local discontinuous Galerkin (LDG) method for the Benjamin-Ono equation. We analyze the stability and error estimates for the semi-discrete LDG scheme. We prove that the scheme is $L^2$-stable and it converges at a rate $\mathcal{O}(h^{k+1/2})$ for general nonlinear flux. Furthermore, we develop a fully discrete LDG scheme using the four-stage fourth order Runge-Kutta method and ensure the devised scheme is strongly stable in case of linear flux using two-step and three-step stability approach under an appropriate time step constraint. Numerical examples are provided to validate the efficiency and accuracy of the method.

In this paper we revisit the discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems in Hilbert spaces and provide some new and improved saturation results under less restrictive conditions, comparing with the existing results in the literature.

The classical satisfiability problem (SAT) is used as a natural and general tool to express and solve combinatorial problems that are in NP. We postulate that provability for implicational intuitionistic propositional logic (IIPC) can serve as a similar natural tool to express problems in Pspace. This approach can be particularly convenient for two reasons. One is that provability in full IPC (with all connectives) can be reduced to provability of implicational formulas of order three. Another advantage is a convenient interpretation in terms of simple alternating automata. Additionally, we distinguish some natural subclasses of IIPC corresponding to the complexity classes NP and co-NP. Our experimental results show that a simple decision procedure requires a significant amount of time only in a small fraction of cases.

We present a generalization of the discrete Lehmann representation (DLR) to three-point correlation and vertex functions in imaginary time and Matsubara frequency. The representation takes the form of a linear combination of judiciously chosen exponentials in imaginary time, and products of simple poles in Matsubara frequency, which are universal for a given temperature and energy cutoff. We present a systematic algorithm to generate compact sampling grids, from which the coefficients of such an expansion can be obtained by solving a linear system. We show that the explicit form of the representation can be used to evaluate diagrammatic expressions involving infinite Matsubara sums, such as polarization functions or self-energies, with controllable, high-order accuracy. This collection of techniques establishes a framework through which methods involving three-point objects can be implemented robustly, with a substantially reduced computational cost and memory footprint.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

北京阿比特科技有限公司