With the rapid development of machine learning and growing concerns about data privacy, federated learning has become an increasingly prominent focus. However, challenges such as attacks on model parameters and the lack of incentive mechanisms hinder the effectiveness of federated learning. Therefore, we propose a Privacy Protected Blockchain-based Federated Learning Model (PPBFL) to enhance the security of federated learning and promote the active participation of nodes in model training. Blockchain ensures that model parameters stored in the InterPlanetary File System (IPFS) remain unaltered. A novel adaptive differential privacy addition algorithm is simultaneously applied to local and global models, preserving the privacy of local models and preventing a decrease in the security of the global model due to the presence of numerous local models in federated learning. Additionally, we introduce a new mix transactions mechanism to better protect the identity privacy of local training clients. Security analysis and experimental results demonstrate that PPBFL outperforms baseline methods in both model performance and security.
Crowdsourced machine learning on competition platforms such as Kaggle is a popular and often effective method for generating accurate models. Typically, teams vie for the most accurate model, as measured by overall error on a holdout set, and it is common towards the end of such competitions for teams at the top of the leaderboard to ensemble or average their models outside the platform mechanism to get the final, best global model. In arXiv:2201.10408, the authors developed an alternative crowdsourcing framework in the context of fair machine learning, in order to integrate community feedback into models when subgroup unfairness is present and identifiable. There, unlike in classical crowdsourced ML, participants deliberately specialize their efforts by working on subproblems, such as demographic subgroups in the service of fairness. Here, we take a broader perspective on this work: we note that within this framework, participants may both specialize in the service of fairness and simply to cater to their particular expertise (e.g., focusing on identifying bird species in an image classification task). Unlike traditional crowdsourcing, this allows for the diversification of participants' efforts and may provide a participation mechanism to a larger range of individuals (e.g. a machine learning novice who has insight into a specific fairness concern). We present the first medium-scale experimental evaluation of this framework, with 46 participating teams attempting to generate models to predict income from American Community Survey data. We provide an empirical analysis of teams' approaches, and discuss the novel system architecture we developed. From here, we give concrete guidance for how best to deploy such a framework.
It is desirable in many multi-objective machine learning applications, such as multi-task learning with conflicting objectives and multi-objective reinforcement learning, to find a Pareto solution that can match a given preference of a decision maker. These problems are often large-scale with available gradient information but cannot be handled very well by the existing algorithms. To tackle this critical issue, this paper proposes a novel predict-and-correct framework for locating a Pareto solution that fits the preference of a decision maker. In the proposed framework, a constraint function is introduced in the search progress to align the solution with a user-specific preference, which can be optimized simultaneously with multiple objective functions. Experimental results show that our proposed method can efficiently find a particular Pareto solution under the demand of a decision maker for standard multiobjective benchmark, multi-task learning, and multi-objective reinforcement learning problems with more than thousands of decision variables. Code is available at: //github.com/xzhang2523/pmgda. Our code is current provided in the pgmda.rar attached file and will be open-sourced after publication.}
With the increased deployment of machine learning models in various real-world applications, researchers and practitioners alike have emphasized the need for explanations of model behaviour. To this end, two broad strategies have been outlined in prior literature to explain models. Post hoc explanation methods explain the behaviour of complex black-box models by identifying features critical to model predictions; however, prior work has shown that these explanations may not be faithful, in that they incorrectly attribute high importance to features that are unimportant or non-discriminative for the underlying task. Inherently interpretable models, on the other hand, circumvent these issues by explicitly encoding explanations into model architecture, meaning their explanations are naturally faithful, but they often exhibit poor predictive performance due to their limited expressive power. In this work, we identify a key reason for the lack of faithfulness of feature attributions: the lack of robustness of the underlying black-box models, especially to the erasure of unimportant distractor features in the input. To address this issue, we propose Distractor Erasure Tuning (DiET), a method that adapts black-box models to be robust to distractor erasure, thus providing discriminative and faithful attributions. This strategy naturally combines the ease of use of post hoc explanations with the faithfulness of inherently interpretable models. We perform extensive experiments on semi-synthetic and real-world datasets and show that DiET produces models that (1) closely approximate the original black-box models they are intended to explain, and (2) yield explanations that match approximate ground truths available by construction. Our code is made public at //github.com/AI4LIFE-GROUP/DiET.
Quantifying the value of data within a machine learning workflow can play a pivotal role in making more strategic decisions in machine learning initiatives. The existing Shapley value based frameworks for data valuation in machine learning are computationally expensive as they require considerable amount of repeated training of the model to obtain the Shapley value. In this paper, we introduce an efficient data valuation framework EcoVal, to estimate the value of data for machine learning models in a fast and practical manner. Instead of directly working with individual data sample, we determine the value of a cluster of similar data points. This value is further propagated amongst all the member cluster points. We show that the overall data value can be determined by estimating the intrinsic and extrinsic value of each data. This is enabled by formulating the performance of a model as a \textit{production function}, a concept which is popularly used to estimate the amount of output based on factors like labor and capital in a traditional free economic market. We provide a formal proof of our valuation technique and elucidate the principles and mechanisms that enable its accelerated performance. We demonstrate the real-world applicability of our method by showcasing its effectiveness for both in-distribution and out-of-sample data. This work addresses one of the core challenges of efficient data valuation at scale in machine learning models.
The operator learning has received significant attention in recent years, with the aim of learning a mapping between function spaces. Prior works have proposed deep neural networks (DNNs) for learning such a mapping, enabling the learning of solution operators of partial differential equations (PDEs). However, these works still struggle to learn dynamics that obeys the laws of physics. This paper proposes Energy-consistent Neural Operators (ENOs), a general framework for learning solution operators of PDEs that follows the energy conservation or dissipation law from observed solution trajectories. We introduce a novel penalty function inspired by the energy-based theory of physics for training, in which the energy functional is modeled by another DNN, allowing one to bias the outputs of the DNN-based solution operators to ensure energetic consistency without explicit PDEs. Experiments on multiple physical systems show that ENO outperforms existing DNN models in predicting solutions from data, especially in super-resolution settings.
Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical groundings, and was unable to disentangle the usefulness of defending methods versus the computational limitation of attacking methods. In this work, we propose a strong reconstruction attack in the setting of federated learning. The attack reconstructs intermediate features and nicely integrates with and outperforms most of the previous methods. On this stronger attack, we thoroughly investigate both theoretically and empirically the effect of the most common defense methods. Our findings suggest that among various defense mechanisms, such as gradient clipping, dropout, additive noise, local aggregation, etc., gradient pruning emerges as the most effective strategy to defend against state-of-the-art attacks.
The popularity of federated learning (FL) is on the rise, along with growing concerns about data privacy in artificial intelligence applications. FL facilitates collaborative multi-party model learning while simultaneously ensuring the preservation of data confidentiality. Nevertheless, the problem of statistical heterogeneity caused by the presence of diverse client data distributions gives rise to certain challenges, such as inadequate personalization and slow convergence. In order to address the above issues, this paper offers a brief summary of the current research progress in the field of personalized federated learning (PFL). It outlines the PFL concept, examines related techniques, and highlights current endeavors. Furthermore, this paper also discusses potential further research and obstacles associated with PFL.
Recent advances of data-driven machine learning have revolutionized fields like computer vision, reinforcement learning, and many scientific and engineering domains. In many real-world and scientific problems, systems that generate data are governed by physical laws. Recent work shows that it provides potential benefits for machine learning models by incorporating the physical prior and collected data, which makes the intersection of machine learning and physics become a prevailing paradigm. In this survey, we present this learning paradigm called Physics-Informed Machine Learning (PIML) which is to build a model that leverages empirical data and available physical prior knowledge to improve performance on a set of tasks that involve a physical mechanism. We systematically review the recent development of physics-informed machine learning from three perspectives of machine learning tasks, representation of physical prior, and methods for incorporating physical prior. We also propose several important open research problems based on the current trends in the field. We argue that encoding different forms of physical prior into model architectures, optimizers, inference algorithms, and significant domain-specific applications like inverse engineering design and robotic control is far from fully being explored in the field of physics-informed machine learning. We believe that this study will encourage researchers in the machine learning community to actively participate in the interdisciplinary research of physics-informed machine learning.
The incredible development of federated learning (FL) has benefited various tasks in the domains of computer vision and natural language processing, and the existing frameworks such as TFF and FATE has made the deployment easy in real-world applications. However, federated graph learning (FGL), even though graph data are prevalent, has not been well supported due to its unique characteristics and requirements. The lack of FGL-related framework increases the efforts for accomplishing reproducible research and deploying in real-world applications. Motivated by such strong demand, in this paper, we first discuss the challenges in creating an easy-to-use FGL package and accordingly present our implemented package FederatedScope-GNN (FS-G), which provides (1) a unified view for modularizing and expressing FGL algorithms; (2) comprehensive DataZoo and ModelZoo for out-of-the-box FGL capability; (3) an efficient model auto-tuning component; and (4) off-the-shelf privacy attack and defense abilities. We validate the effectiveness of FS-G by conducting extensive experiments, which simultaneously gains many valuable insights about FGL for the community. Moreover, we employ FS-G to serve the FGL application in real-world E-commerce scenarios, where the attained improvements indicate great potential business benefits. We publicly release FS-G, as submodules of FederatedScope, at //github.com/alibaba/FederatedScope to promote FGL's research and enable broad applications that would otherwise be infeasible due to the lack of a dedicated package.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.