亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g., combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. We address this problem by proposing the use of COvariance Measure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. COMETs are implemented in the comets R package available on CRAN and pycomets Python library available on GitHub. Source code for reproducing all results is available at //github.com/LucasKook/comets. All data sets used in this work are openly available.

相關內容

With the development of technology, the chemical production process is becoming increasingly complex and large-scale, making fault detection particularly important. However, current detective methods struggle to address the complexities of large-scale production processes. In this paper, we integrate the strengths of deep learning and machine learning technologies, combining the advantages of bidirectional long and short-term memory neural networks, fully connected neural networks, and the extra trees algorithm to propose a novel fault detection model named three-layer deep learning network random trees (TDLN-trees). First, the deep learning component extracts temporal features from industrial data, combining and transforming them into a higher-level data representation. Second, the machine learning component processes and classifies the features extracted in the first step. An experimental analysis based on the Tennessee Eastman process verifies the superiority of the proposed method.

In the literature on spatial point processes, there is an emerging challenge in studying marked point processes with points being labelled by functions. In this paper, we focus on point processes living on linear networks and, from distinct points of view, propose several marked summary characteristics that are of great use in studying the average association and dispersion of the function-valued marks. Through a simulation study, we evaluate the performance of our proposed marked summary characteristics, both when marks are independent and when some sort of spatial dependence is evident among them. Finally, we employ our proposed mark summary characteristics to study the spatial structure of urban cycling profiles in Vancouver, Canada.

One of the most promising applications of machine learning (ML) in computational physics is to accelerate the solution of partial differential equations (PDEs). The key objective of ML-based PDE solvers is to output a sufficiently accurate solution faster than standard numerical methods, which are used as a baseline comparison. We first perform a systematic review of the ML-for-PDE solving literature. Of articles that use ML to solve a fluid-related PDE and claim to outperform a standard numerical method, we determine that 79% (60/76) compare to a weak baseline. Second, we find evidence that reporting biases, especially outcome reporting bias and publication bias, are widespread. We conclude that ML-for-PDE solving research is overoptimistic: weak baselines lead to overly positive results, while reporting biases lead to underreporting of negative results. To a large extent, these issues appear to be caused by factors similar to those of past reproducibility crises: researcher degrees of freedom and a bias towards positive results. We call for bottom-up cultural changes to minimize biased reporting as well as top-down structural reforms intended to reduce perverse incentives for doing so.

Statistical learning under distribution shift is challenging when neither prior knowledge nor fully accessible data from the target distribution is available. Distributionally robust learning (DRL) aims to control the worst-case statistical performance within an uncertainty set of candidate distributions, but how to properly specify the set remains challenging. To enable distributional robustness without being overly conservative, in this paper, we propose a shape-constrained approach to DRL, which incorporates prior information about the way in which the unknown target distribution differs from its estimate. More specifically, we assume the unknown density ratio between the target distribution and its estimate is isotonic with respect to some partial order. At the population level, we provide a solution to the shape-constrained optimization problem that does not involve the isotonic constraint. At the sample level, we provide consistency results for an empirical estimator of the target in a range of different settings. Empirical studies on both synthetic and real data examples demonstrate the improved accuracy of the proposed shape-constrained approach.

Self-supervised learning (SSL) has revolutionized visual representation learning, but has not achieved the robustness of human vision. A reason for this could be that SSL does not leverage all the data available to humans during learning. When learning about an object, humans often purposefully turn or move around objects and research suggests that these interactions can substantially enhance their learning. Here we explore whether such object-related actions can boost SSL. For this, we extract the actions performed to change from one ego-centric view of an object to another in four video datasets. We then introduce a new loss function to learn visual and action embeddings by aligning the performed action with the representations of two images extracted from the same clip. This permits the performed actions to structure the latent visual representation. Our experiments show that our method consistently outperforms previous methods on downstream category recognition. In our analysis, we find that the observed improvement is associated with a better viewpoint-wise alignment of different objects from the same category. Overall, our work demonstrates that embodied interactions with objects can improve SSL of object categories.

A number of recent studies have proposed that linear representations are appropriate for solving nonlinear dynamical systems with quantum computers, which fundamentally act linearly on a wave function in a Hilbert space. Linear representations, such as the Koopman representation and Koopman von Neumann mechanics, have regained attention from the dynamical-systems research community. Here, we aim to present a unified theoretical framework, currently missing in the literature, with which one can compare and relate existing methods, their conceptual basis, and their representations. We also aim to show that, despite the fact that quantum simulation of nonlinear classical systems may be possible with such linear representations, a necessary projection into a feasible finite-dimensional space will in practice eventually induce numerical artifacts which can be hard to eliminate or even control. As a result, a practical, reliable and accurate way to use quantum computation for solving general nonlinear dynamical systems is still an open problem.

Discrete choice models with non-monotonic response functions are important in many areas of application, especially political sciences and marketing. This paper describes a novel unfolding model for binary data that allows for heavy-tailed shocks to the underlying utilities. One of our key contributions is a Markov chain Monte Carlo algorithm that requires little or no parameter tuning, fully explores the support of the posterior distribution, and can be used to fit various extensions of our core model that involve (Bayesian) hypothesis testing on the latent construct. Our empirical evaluations of the model and the associated algorithm suggest that they provide better complexity-adjusted fit to voting data from the United States House of Representatives.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Meta-learning, or learning to learn, has gained renewed interest in recent years within the artificial intelligence community. However, meta-learning is incredibly prevalent within nature, has deep roots in cognitive science and psychology, and is currently studied in various forms within neuroscience. The aim of this review is to recast previous lines of research in the study of biological intelligence within the lens of meta-learning, placing these works into a common framework. More recent points of interaction between AI and neuroscience will be discussed, as well as interesting new directions that arise under this perspective.

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

北京阿比特科技有限公司