亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a novel Graph-based debiasing Algorithm for Underreported Data (GRAUD) aiming at an efficient joint estimation of event counts and discovery probabilities across spatial or graphical structures. This innovative method provides a solution to problems seen in fields such as policing data and COVID-$19$ data analysis. Our approach avoids the need for strong priors typically associated with Bayesian frameworks. By leveraging the graph structures on unknown variables $n$ and $p$, our method debiases the under-report data and estimates the discovery probability at the same time. We validate the effectiveness of our method through simulation experiments and illustrate its practicality in one real-world application: police 911 calls-to-service data.

相關內容

The Ultra Weak Variational Formulation (UWVF) is a special Trefftz discontinuous Galerkin method, here applied to the time-harmonic Maxwell's equations. The method uses superpositions of plane waves to represent solutions element by element on a finite element mesh. We discuss the use of our parallel UWVF implementation called ParMax, and concentrate on methods for obtaining high order solutions in the presence of scatterers with piecewise smooth boundaries. In particular, we show how curved surface triangles can be incorporated in the UWVF. This requires quadrature to assemble the system matrices. We also show how to implement a total field and scattered field approach, together with the transmission conditions across an interface to handle resistive sheets. We note also that a wide variety of element shapes can be used, that the elements can be large compared to the wavelength of the radiation, and that a matrix free version is easy to implement (although computationally costly). Our contributions are illustrated by several numerical examples showing that curved elements can improve the efficiency of the UWVF, and that the method accurately handles resistive screens as well as PEC and penetrable scatterers. Using large curved elements and the matrix free approach, we are able to simulate scattering from an aircraft at X-band frequencies. The innovations here demonstrate the applicability of the UWVF for industrial examples.

Numerous solutions are proposed for the Traffic Signal Control (TSC) tasks aiming to provide efficient transportation and mitigate congestion waste. In recent, promising results have been attained by Reinforcement Learning (RL) methods through trial and error in simulators, bringing confidence in solving cities' congestion headaches. However, there still exist performance gaps when simulator-trained policies are deployed to the real world. This issue is mainly introduced by the system dynamic difference between the training simulator and the real-world environments. The Large Language Models (LLMs) are trained on mass knowledge and proved to be equipped with astonishing inference abilities. In this work, we leverage LLMs to understand and profile the system dynamics by a prompt-based grounded action transformation. Accepting the cloze prompt template, and then filling in the answer based on accessible context, the pre-trained LLM's inference ability is exploited and applied to understand how weather conditions, traffic states, and road types influence traffic dynamics, being aware of this, the policies' action is taken and grounded based on realistic dynamics, thus help the agent learn a more realistic policy. We conduct experiments using DQN to show the effectiveness of the proposed PromptGAT's ability in mitigating the performance gap from simulation to reality (sim-to-real).

Reinforcement Learning (RL) methods are typically sample-inefficient, making it challenging to train and deploy RL-policies in real world robots. Even a robust policy trained in simulation, requires a real-world deployment to assess their performance. This paper proposes a new approach to evaluate the real-world performance of agent policies without deploying them in the real world. The proposed approach incorporates a simulator along with real-world offline data to evaluate the performance of any policy using the framework of Marginalized Importance Sampling (MIS). Existing MIS methods face two challenges: (1) large density ratios that deviate from a reasonable range and (2) indirect supervision, where the ratio needs to be inferred indirectly, thus exacerbating estimation error. Our approach addresses these challenges by introducing the target policy's occupancy in the simulator as an intermediate variable and learning the density ratio as the product of two terms that can be learned separately. The first term is learned with direct supervision and the second term has a small magnitude, thus making it easier to run. We analyze the sample complexity as well as error propagation of our two step-procedure. Furthermore, we empirically evaluate our approach on Sim2Sim environments such as Cartpole, Reacher and Half-Cheetah. Our results show that our method generalizes well across a variety of Sim2Sim gap, target policies and offline data collection policies. We also demonstrate the performance of our algorithm on a Sim2Real task of validating the performance of a 7 DOF robotic arm using offline data along with a gazebo based arm simulator.

As surgical interventions trend towards minimally invasive approaches, Concentric Tube Robots (CTRs) have been explored for various interventions such as brain, eye, fetoscopic, lung, cardiac and prostate surgeries. Arranged concentrically, each tube is rotated and translated independently to move the robot end-effector position, making kinematics and control challenging. Classical model-based approaches have been previously investigated with developments in deep learning based approaches outperforming more classical approaches in both forward kinematics and shape estimation. We propose a deep reinforcement learning approach to control where we generalise across two to four systems, an element not yet achieved in any other deep learning approach for CTRs. In this way we explore the likely robustness of the control approach. Also investigated is the impact of rotational constraints applied on tube actuation and the effects on error metrics. We evaluate inverse kinematics errors and tracking error for path following tasks and compare the results to those achieved using state of the art methods. Additionally, as current results are performed in simulation, we also investigate a domain transfer approach known as domain randomization and evaluate error metrics as an initial step towards hardware implementation. Finally, we compare our method to a Jacobian approach found in literature.

We propose a novel end-to-end document understanding model called SeRum (SElective Region Understanding Model) for extracting meaningful information from document images, including document analysis, retrieval, and office automation. Unlike state-of-the-art approaches that rely on multi-stage technical schemes and are computationally expensive, SeRum converts document image understanding and recognition tasks into a local decoding process of the visual tokens of interest, using a content-aware token merge module. This mechanism enables the model to pay more attention to regions of interest generated by the query decoder, improving the model's effectiveness and speeding up the decoding speed of the generative scheme. We also designed several pre-training tasks to enhance the understanding and local awareness of the model. Experimental results demonstrate that SeRum achieves state-of-the-art performance on document understanding tasks and competitive results on text spotting tasks. SeRum represents a substantial advancement towards enabling efficient and effective end-to-end document understanding.

This work develops a novel all-at-once space-time preconditioning approach for resistive magnetohydrodynamics (MHD), with a focus on model problems targeting fusion reactor design. We consider parallel-in-time due to the long time domains required to capture the physics of interest, as well as the complexity of the underlying system and thereby computational cost of long-time integration. To ameliorate this cost by using many processors, we thus develop a novel approach to solving the whole space-time system that is parallelizable in both space and time. We develop a space-time block preconditioning for resistive MHD, following the space-time block preconditioning concept first introduced by Danieli et al. in 2022 for incompressible flow, where an effective preconditioner for classic sequential time-stepping is extended to the space-time setting. The starting point for our derivation is the continuous Schur complement preconditioner by Cyr et al. in 2021, which we proceed to generalise in order to produce, to our knowledge, the first space-time block preconditioning approach for the challenging equations governing incompressible resistive MHD. The numerical results are promising for the model problems of island coalescence and tearing mode, with the overhead computational cost associated with space-time preconditioning versus sequential time-stepping being modest and primarily in the range of 2x-5x, which is low for parallel-in-time schemes in general. Additionally, the scaling results for inner (linear) and outer (nonlinear) iterations are flat in the case of fixed time-step size and only grow very slowly in the case of time-step refinement.

Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司