For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.
Convolutional codes with a maximum distance profile attain the largest possible column distances for the maximum number of time instants and thus have outstanding error-correcting capability especially for streaming applications. Explicit constructions of such codes are scarce in the literature. In particular, known constructions of convolutional codes with rate k/n and a maximum distance profile require a field of size at least exponential in n for general code parameters. At the same time, the only known lower bound on the field size is the trivial bound that is linear in n. In this paper, we show that a finite field of size $\Omega_L(n^{L-1})$ is necessary for constructing convolutional codes with rate k/n and a maximum distance profile of length L. As a direct consequence, this rules out the possibility of constructing convolutional codes with a maximum distance profile of length L >= 3 over a finite field of size O(n). Additionally, we also present an explicit construction of convolutional code with rate k/n and a maximum profile of length L = 1 over a finite field of size $O(n^{\min\{k,n-k\}})$, achieving a smaller field size than known constructions with the same profile length.
Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variations of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton--Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift--Hohenberg equation, the Ohta--Kawasaki equation and the Kuramoto--Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.
We consider the problem of dynamically maintaining the convex hull of a set $S$ of points in the plane under the following special sequence of insertions and deletions (called window-sliding updates): insert a point to the right of all points of $S$ and delete the leftmost point of $S$. We propose an $O(|S|)$-space data structure that can handle each update in $O(1)$ amortized time, such that all standard binary-search-based queries on the convex hull of $S$ can be answered in $O(\log |S|)$ time, and the convex hull itself can be output in time linear in the number of its vertices.
Under some regularity assumptions, we report an a priori error analysis of a dG scheme for the Poisson and Stokes flow problem in their dual mixed formulation. Both formulations satisfy a Babu\v{s}ka-Brezzi type condition within the space H(div) x L2. It is well known that the lowest order Crouzeix-Raviart element paired with piecewise constants satisfies such a condition on (broken) H1 x L2 spaces. In the present article, we use this pair. The continuity of the normal component is weakly imposed by penalizing jumps of the broken H(div) component. For the resulting methods, we prove well-posedness and convergence with constants independent of data and mesh size. We report error estimates in the methods natural norms and optimal local error estimates for the divergence error. In fact, our finite element solution shares for each triangle one DOF with the CR interpolant and the divergence is locally the best-approximation for any regularity. Numerical experiments support the findings and suggest that the other errors converge optimally even for the lowest regularity solutions and a crack-problem, as long as the crack is resolved by the mesh.
We describe a proof-of-concept development and application of a phase averaging technique to the nonlinear rotating shallow water equations on the sphere, discretised using compatible finite element methods. Phase averaging consists of averaging the nonlinearity over phase shifts in the exponential of the linear wave operator. Phase averaging aims to capture the slow dynamics in a solution that is smoother in time (in transformed variables) so that larger timesteps may be taken. We overcome the two key technical challenges that stand in the way of studying the phase averaging and advancing its implementation: 1) we have developed a stable matrix exponential specific to finite elements and 2) we have developed a parallel finite averaging proceedure. Following Peddle et al (2019), we consider finite width phase averaging windows, since the equations have a finite timescale separation. In our numerical implementation, the averaging integral is replaced by a Riemann sum, where each term can be evaluated in parallel. This creates an opportunity for parallelism in the timestepping method, which we use here to compute our solutions. Here, we focus on the stability and accuracy of the numerical solution. We confirm there is an optimal averaging window, in agreement with theory. Critically, we observe that the combined time discretisation and averaging error is much smaller than the time discretisation error in a semi-implicit method applied to the same spatial discretisation. An evaluation of the parallel aspects will follow in later work.
Various methods have been proposed to approximate a solution to the truncated Hausdorff moment problem. In this paper, we establish a method of comparison for the performance of the approximations. Three ways of producing random moment sequences are discussed and applied. Also, some of the approximations have been rewritten as linear transforms, and detailed accuracy requirements are analyzed. Our finding shows that the performance of the approximations differs significantly in their convergence properties, accuracy, and numerical complexity and that the decay type of the moment sequence strongly affects the accuracy requirement.
We are interested in the discretisation of a drift-diffusion system in the framework of hybrid finite volume (HFV) methods on general polygonal/polyhedral meshes. The system under study is composed of two anisotropic and nonlinear convection-diffusion equations with nonsymmetric tensors, coupled with a Poisson equation and describes in particular semiconductor devices immersed in a magnetic field. We introduce a new scheme based on an entropy-dissipation relation and prove that the scheme admits solutions with values in admissible sets - especially, the computed densities remain positive. Moreover, we show that the discrete solutions to the scheme converge exponentially fast in time towards the associated discrete thermal equilibrium. Several numerical tests confirm our theoretical results. Up to our knowledge, this scheme is the first one able to discretise anisotropic drift-diffusion systems while preserving the bounds on the densities.
A novel linear integration rule called $\textit{control neighbors}$ is proposed in which nearest neighbor estimates act as control variates to speed up the convergence rate of the Monte Carlo procedure. The main result is the $\mathcal{O}(n^{-1/2} n^{-1/d})$ convergence rate -- where $n$ stands for the number of evaluations of the integrand and $d$ for the dimension of the domain -- of this estimate for Lipschitz functions, a rate which, in some sense, is optimal. Several numerical experiments validate the complexity bound and highlight the good performance of the proposed estimator.
Port-Hamiltonian (PH) systems provide a framework for modeling, analysis and control of complex dynamical systems, where the complexity might result from multi-physical couplings, non-trivial domains and diverse nonlinearities. A major benefit of the PH representation is the explicit formulation of power interfaces, so-called ports, which allow for a power-preserving interconnection of subsystems to compose flexible multibody systems in a modular way. In this work, we present a PH representation of geometrically exact strings with nonlinear material behaviour. Furthermore, using structure-preserving discretization techniques a corresponding finite-dimensional PH state space model is developed. Applying mixed finite elements, the semi-discrete model retains the PH structure and the ports (pairs of velocities and forces) on the discrete level. Moreover, discrete derivatives are used in order to obtain an energy-consistent time-stepping method. The numerical properties of the newly devised model are investigated in a representative example. The developed PH state space model can be used for structure-preserving simulation and model order reduction as well as feedforward and feedback control design.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.