In this paper a class of optimization problems with uncertain linear constraints is discussed. It is assumed that the constraint coefficients are random vectors whose probability distributions are only partially known. Possibility theory is used to model the imprecise probabilities. In one of the interpretations, a possibility distribution (a membership function of a fuzzy set) in the set of coefficient realizations induces a necessity measure, which in turn defines a family of probability distributions in this set. The distributionally robust approach is then used to transform the imprecise constraints into deterministic counterparts. Namely, the uncertain left-had side of each constraint is replaced with the expected value with respect to the worst probability distribution that can occur. It is shown how to represent the resulting problem by using linear or second order cone constraints. This leads to problems which are computationally tractable for a wide class of optimization models, in particular for linear programming.
This paper considers the distributed online convex optimization problem with time-varying constraints over a network of agents. This is a sequential decision making problem with two sequences of arbitrarily varying convex loss and constraint functions. At each round, each agent selects a decision from the decision set, and then only a portion of the loss function and a coordinate block of the constraint function at this round are privately revealed to this agent. The goal of the network is to minimize the network-wide loss accumulated over time. Two distributed online algorithms with full-information and bandit feedback are proposed. Both dynamic and static network regret bounds are analyzed for the proposed algorithms, and network cumulative constraint violation is used to measure constraint violation, which excludes the situation that strictly feasible constraints can compensate the effects of violated constraints. In particular, we show that the proposed algorithms achieve $\mathcal{O}(T^{\max\{\kappa,1-\kappa\}})$ static network regret and $\mathcal{O}(T^{1-\kappa/2})$ network cumulative constraint violation, where $T$ is the time horizon and $\kappa\in(0,1)$ is a user-defined trade-off parameter. Moreover, if the loss functions are strongly convex, then the static network regret bound can be reduced to $\mathcal{O}(T^{\kappa})$. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results.
Markov Chain Monte Carlo (MCMC) methods form one of the algorithmic foundations of high-dimensional Bayesian inverse problems. The recent development of likelihood-informed subspace (LIS) methods offer a viable route to designing efficient MCMC methods for exploring high-dimensional posterior distributions via exploiting the intrinsic low-dimensional structure of the underlying inverse problem. However, existing LIS methods and the associated performance analysis often assume that the prior distribution is Gaussian. This assumption is limited for inverse problems aiming to promote sparsity in the parameter estimation, as heavy-tailed priors, e.g., Laplace distribution or the elastic net commonly used in Bayesian LASSO, are often needed in this case. To overcome this limitation, we consider a prior normalization technique that transforms any non-Gaussian (e.g. heavy-tailed) priors into standard Gaussian distributions, which make it possible to implement LIS methods to accelerate MCMC sampling via such transformations. We also rigorously investigate the integration of such transformations with several MCMC methods for high-dimensional problems. Finally, we demonstrate various aspects of our theoretical claims on two nonlinear inverse problems.
To overcome topological constraints and improve the expressiveness of normalizing flow architectures, Wu, K\"ohler and No\'e introduced stochastic normalizing flows which combine deterministic, learnable flow transformations with stochastic sampling methods. In this paper, we consider stochastic normalizing flows from a Markov chain point of view. In particular, we replace transition densities by general Markov kernels and establish proofs via Radon-Nikodym derivatives which allows to incorporate distributions without densities in a sound way. Further, we generalize the results for sampling from posterior distributions as required in inverse problems. The performance of the proposed conditional stochastic normalizing flow is demonstrated by numerical examples.
In black-box function optimization, we need to consider not only controllable design variables but also uncontrollable stochastic environment variables. In such cases, it is necessary to solve the optimization problem by taking into account the uncertainty of the environmental variables. Chance-constrained (CC) problem, the problem of maximizing the expected value under a certain level of constraint satisfaction probability, is one of the practically important problems in the presence of environmental variables. In this study, we consider distributionally robust CC (DRCC) problem and propose a novel DRCC Bayesian optimization method for the case where the distribution of the environmental variables cannot be precisely specified. We show that the proposed method can find an arbitrary accurate solution with high probability in a finite number of trials, and confirm the usefulness of the proposed method through numerical experiments.
The scalar auxiliary variable (SAV) approach \cite{shen2018scalar} and its generalized version GSAV proposed in \cite{huang2020highly} are very popular methods to construct efficient and accurate energy stable schemes for nonlinear dissipative systems. However, the discrete value of the SAV is not directly linked to the free energy of the dissipative system, and may lead to inaccurate solutions if the time step is not sufficiently small. Inspired by the relaxed SAV method proposed in \cite{jiang2022improving} for gradient flows, we propose in this paper a generalized SAV approach with relaxation (R-GSAV) for general dissipative systems. The R-GSAV approach preserves all the advantages of the GSAV appraoch, in addition, it dissipates a modified energy that is directly linked to the original free energy. We prove that the $k$-th order implicit-explicit (IMEX) schemes based on R-GSAV are unconditionally energy stable, and we carry out a rigorous error analysis for $k=1,2,3,4,5$. We present ample numerical results to demonstrate the improved accuracy and effectiveness of the R-GSAV approach.
This paper tackles the problem of missing data imputation for noisy and non-Gaussian data. A classical imputation method, the Expectation Maximization (EM) algorithm for Gaussian mixture models, has shown interesting properties when compared to other popular approaches such as those based on k-nearest neighbors or on multiple imputations by chained equations. However, Gaussian mixture models are known to be not robust to heterogeneous data, which can lead to poor estimation performance when the data is contaminated by outliers or come from a non-Gaussian distributions. To overcome this issue, a new expectation maximization algorithm is investigated for mixtures of elliptical distributions with the nice property of handling potential missing data. The complete-data likelihood associated with mixtures of elliptical distributions is well adapted to the EM framework thanks to its conditional distribution, which is shown to be a Student distribution. Experimental results on synthetic data demonstrate that the proposed algorithm is robust to outliers and can be used with non-Gaussian data. Furthermore, experiments conducted on real-world datasets show that this algorithm is very competitive when compared to other classical imputation methods.
Parareal is a well-studied algorithm for numerically integrating systems of time-dependent differential equations by parallelising the temporal domain. Given approximate initial values at each temporal sub-interval, the algorithm locates a solution in a fixed number of iterations using a predictor-corrector, stopping once a tolerance is met. This iterative process combines solutions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical integrators. In this paper, we introduce a stochastic parareal algorithm aimed at accelerating the convergence of the deterministic parareal algorithm. Instead of providing the predictor-corrector with a deterministically located set of initial values, the stochastic algorithm samples initial values from dynamically varying probability distributions in each temporal sub-interval. All samples are then propagated in parallel using the expensive integrator. The set of sampled initial values yielding the most continuous (smoothest) trajectory across consecutive sub-intervals are fed into the predictor-corrector, converging in fewer iterations than the deterministic algorithm with a given probability. The performance of the stochastic algorithm, implemented using various probability distributions, is illustrated on low-dimensional systems of ordinary differential equations (ODEs). We provide numerical evidence that when the number of sampled initial values is large enough, stochastic parareal converges almost certainly in fewer iterations than the deterministic algorithm, maintaining solution accuracy. Given its stochastic nature, we also highlight that multiple simulations of stochastic parareal return a distribution of solutions that can represent a measure of uncertainty over the ODE solution.
We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.
The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.
In this paper, we study the optimal convergence rate for distributed convex optimization problems in networks. We model the communication restrictions imposed by the network as a set of affine constraints and provide optimal complexity bounds for four different setups, namely: the function $F(\xb) \triangleq \sum_{i=1}^{m}f_i(\xb)$ is strongly convex and smooth, either strongly convex or smooth or just convex. Our results show that Nesterov's accelerated gradient descent on the dual problem can be executed in a distributed manner and obtains the same optimal rates as in the centralized version of the problem (up to constant or logarithmic factors) with an additional cost related to the spectral gap of the interaction matrix. Finally, we discuss some extensions to the proposed setup such as proximal friendly functions, time-varying graphs, improvement of the condition numbers.