亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks have shown exemplary performance on semantic scene understanding tasks on source domains, but due to the absence of style diversity during training, enhancing performance on unseen target domains using only single source domain data remains a challenging task. Generation of simulated data is a feasible alternative to retrieving large style-diverse real-world datasets as it is a cumbersome and budget-intensive process. However, the large domain-specific inconsistencies between simulated and real-world data pose a significant generalization challenge in semantic segmentation. In this work, to alleviate this problem, we propose a novel MultiResolution Feature Perturbation (MRFP) technique to randomize domain-specific fine-grained features and perturb style of coarse features. Our experimental results on various urban-scene segmentation datasets clearly indicate that, along with the perturbation of style-information, perturbation of fine-feature components is paramount to learn domain invariant robust feature maps for semantic segmentation models. MRFP is a simple and computationally efficient, transferable module with no additional learnable parameters or objective functions, that helps state-of-the-art deep neural networks to learn robust domain invariant features for simulation-to-real semantic segmentation.

相關內容

6G networks are expected to provide more diverse capabilities than their predecessors and are likely to support applications beyond current mobile applications, such as virtual and augmented reality (VR/AR), AI, and the Internet of Things (IoT). In contrast to typical multiple-input multiple-output (MIMO) systems, THz MIMO precoding cannot be conducted totally at baseband using digital precoders due to the restricted number of signal mixers and analog-to-digital converters that can be supported due to their cost and power consumption. In this thesis, we analyzed the performance of multiuser massive MIMO-OFDM THz wireless systems with hybrid beamforming. Carrier frequency offset (CFO) is one of the most well-known disturbances for OFDM. For practicality, we accounted for CFO, which results in Intercarrier Interference. Incorporating the combined impact of molecular absorption, high sparsity, and multi-path fading, we analyzed a three-dimensional wideband THz channel and the carrier frequency offset in multi-carrier systems. With this model, we first presented a two-stage wideband hybrid beamforming technique comprising Riemannian manifolds optimization for analog beamforming and then a zero-forcing (ZF) approach for digital beamforming. We adjusted the objective function to reduce complexity, and instead of maximizing the bit rate, we determined parameters by minimizing interference. Numerical results demonstrate the significance of considering ICI for practical implementation for the THz system. We demonstrated how our change in problem formulation minimizes latency without compromising results. We also evaluated spectral efficiency by varying the number of RF chains and antennas. The spectral efficiency grows as the number of RF chains and antennas increases, but the spectral efficiency of antennas declines when the number of users increases.

As deep neural networks become adopted in high-stakes domains, it is crucial to be able to identify when inference inputs are Out-of-Distribution (OOD) so that users can be alerted of likely drops in performance and calibration despite high confidence. Among many others, existing methods use the following two scores to do so without training on any apriori OOD examples: a learned temperature and an energy score. In this paper we introduce Ablated Learned Temperature Energy (or "AbeT" for short), a method which combines these prior methods in novel ways with effective modifications. Due to these contributions, AbeT lowers the False Positive Rate at $95\%$ True Positive Rate (FPR@95) by $35.39\%$ in classification (averaged across all ID and OOD datasets measured) compared to state of the art without training networks in multiple stages or requiring hyperparameters or test-time backward passes. We additionally provide empirical insights as to how our model learns to distinguish between In-Distribution (ID) and OOD samples while only being explicitly trained on ID samples via exposure to misclassified ID examples at training time. Lastly, we show the efficacy of our method in identifying predicted bounding boxes and pixels corresponding to OOD objects in object detection and semantic segmentation, respectively - with an AUROC increase of $5.15\%$ in object detection and both a decrease in FPR@95 of $41.48\%$ and an increase in AUPRC of $34.20\%$ on average in semantic segmentation compared to previous state of the art.

Programming can be challenging for novices, but it is difficult to provide high-quality, comprehensive, and timely support at scale. Generative AI and its products, like ChatGPT, can create a solution for most introductory programming problems. However, students may become overly reliant on these tools for quick code generation and homework completion, leading to reduced engagement and limited learning. In this work, we present \sys{}, a system that utilizes large language models (LLM) while still promoting students' cognitive engagement. \sys{} provides a personalized Parsons puzzle to support struggling students. In a Parsons puzzle, students place mixed-up code blocks in the correct order to solve a problem. A technical evaluation with 800 incorrect student code demonstrated that \sys{} can efficiently create high-quality (correct, personalized, and concise) Parsons puzzles for students. In a within-subjects experiment with 18 novice programmers, most students rated using \sys{} as more engaging, and they preferred \sys{} for learning rather than simply receiving an AI-generated solution. Additionally, students recalled more new elements from the supported practice to the posttest after using \sys{}, compared to when they simply received a direct solution. Qualitative observations and interviews provided evidence for the benefits of \sys{} including emphasizing algorithmic thinking, fostering continuity in learning, promoting metacognitive reflection, and boosting student confidence. We conclude by suggesting future designs for applying generative AI in a way that minimizes over-reliance and enhances learning.

This paper investigates discrepancies in how neural networks learn from different imaging domains, which are commonly overlooked when adopting computer vision techniques from the domain of natural images to other specialized domains such as medical images. Recent works have found that the generalization error of a trained network typically increases with the intrinsic dimension ($d_{data}$) of its training set. Yet, the steepness of this relationship varies significantly between medical (radiological) and natural imaging domains, with no existing theoretical explanation. We address this gap in knowledge by establishing and empirically validating a generalization scaling law with respect to $d_{data}$, and propose that the substantial scaling discrepancy between the two considered domains may be at least partially attributed to the higher intrinsic "label sharpness" ($K_F$) of medical imaging datasets, a metric which we propose. Next, we demonstrate an additional benefit of measuring the label sharpness of a training set: it is negatively correlated with the trained model's adversarial robustness, which notably leads to models for medical images having a substantially higher vulnerability to adversarial attack. Finally, we extend our $d_{data}$ formalism to the related metric of learned representation intrinsic dimension ($d_{repr}$), derive a generalization scaling law with respect to $d_{repr}$, and show that $d_{data}$ serves as an upper bound for $d_{repr}$. Our theoretical results are supported by thorough experiments with six models and eleven natural and medical imaging datasets over a range of training set sizes. Our findings offer insights into the influence of intrinsic dataset properties on generalization, representation learning, and robustness in deep neural networks.

Most existing graph neural networks (GNNs) are limited to undirected graphs, whose restricted scope of the captured relational information hinders their expressive capabilities and deployments in real-world scenarios. Compared with undirected graphs, directed graphs (digraphs) fit the demand for modeling more complex topological systems by capturing more intricate relationships between nodes, such as formulating transportation and financial networks. While some directed GNNs have been introduced, their inspiration mainly comes from deep learning architectures, which lead to redundant complexity and computation, making them inapplicable to large-scale databases. To address these issues, we propose LightDiC, a scalable variant of the digraph convolution based on the magnetic Laplacian. Since topology-related computations are conducted solely during offline pre-processing, LightDiC achieves exceptional scalability, enabling downstream predictions to be trained separately without incurring recursive computational costs. Theoretical analysis shows that LightDiC utilizes directed information to achieve message passing based on the complex field, which corresponds to the proximal gradient descent process of the Dirichlet energy optimization function from the perspective of digraph signal denoising, ensuring its expressiveness. Experimental results demonstrate that LightDiC performs comparably well or even outperforms other SOTA methods in various downstream tasks, with fewer learnable parameters and higher training efficiency. Notably, LightDiC is the first DiGNN to provide satisfactory results in the most representative large-scale database (ogbn-papers100M).

Leveraging the symmetries inherent to specific data domains for the construction of equivariant neural networks has lead to remarkable improvements in terms of data efficiency and generalization. However, most existing research focuses on symmetries arising from planar and volumetric data, leaving a crucial data source largely underexplored: time-series. In this work, we fill this gap by leveraging the symmetries inherent to time-series for the construction of equivariant neural network. We identify two core symmetries: *scale and translation*, and construct scale-translation equivariant neural networks for time-series learning. Intriguingly, we find that scale-translation equivariant mappings share strong resemblance with the wavelet transform. Inspired by this resemblance, we term our networks Wavelet Networks, and show that they perform nested non-linear wavelet-like time-frequency transforms. Empirical results show that Wavelet Networks outperform conventional CNNs on raw waveforms, and match strongly engineered spectrogram techniques across several tasks and time-series types, including audio, environmental sounds, and electrical signals. Our code is publicly available at //github.com/dwromero/wavelet_networks.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Large knowledge graphs often grow to store temporal facts that model the dynamic relations or interactions of entities along the timeline. Since such temporal knowledge graphs often suffer from incompleteness, it is important to develop time-aware representation learning models that help to infer the missing temporal facts. While the temporal facts are typically evolving, it is observed that many facts often show a repeated pattern along the timeline, such as economic crises and diplomatic activities. This observation indicates that a model could potentially learn much from the known facts appeared in history. To this end, we propose a new representation learning model for temporal knowledge graphs, namely CyGNet, based on a novel timeaware copy-generation mechanism. CyGNet is not only able to predict future facts from the whole entity vocabulary, but also capable of identifying facts with repetition and accordingly predicting such future facts with reference to the known facts in the past. We evaluate the proposed method on the knowledge graph completion task using five benchmark datasets. Extensive experiments demonstrate the effectiveness of CyGNet for predicting future facts with repetition as well as de novo fact prediction.

Stickers with vivid and engaging expressions are becoming increasingly popular in online messaging apps, and some works are dedicated to automatically select sticker response by matching text labels of stickers with previous utterances. However, due to their large quantities, it is impractical to require text labels for the all stickers. Hence, in this paper, we propose to recommend an appropriate sticker to user based on multi-turn dialog context history without any external labels. Two main challenges are confronted in this task. One is to learn semantic meaning of stickers without corresponding text labels. Another challenge is to jointly model the candidate sticker with the multi-turn dialog context. To tackle these challenges, we propose a sticker response selector (SRS) model. Specifically, SRS first employs a convolutional based sticker image encoder and a self-attention based multi-turn dialog encoder to obtain the representation of stickers and utterances. Next, deep interaction network is proposed to conduct deep matching between the sticker with each utterance in the dialog history. SRS then learns the short-term and long-term dependency between all interaction results by a fusion network to output the the final matching score. To evaluate our proposed method, we collect a large-scale real-world dialog dataset with stickers from one of the most popular online chatting platform. Extensive experiments conducted on this dataset show that our model achieves the state-of-the-art performance for all commonly-used metrics. Experiments also verify the effectiveness of each component of SRS. To facilitate further research in sticker selection field, we release this dataset of 340K multi-turn dialog and sticker pairs.

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

北京阿比特科技有限公司