亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As safe and comfortable interactions with pedestrians could contribute to automated vehicles' (AVs) social acceptance and scale, increasing attention has been drawn to computational pedestrian behavior models. However, very limited studies characterize pedestrian crossing behavior based on specific behavioral mechanisms, as those mechanisms underpinning pedestrian road behavior are not yet clear. Here, we reinterpret pedestrian crossing behavior based on a deconstructed crossing decision process at uncontrolled intersections with continuous traffic. Notably, we explain and model pedestrian crossing behavior as they wait for crossing opportunities, optimizing crossing decisions by comparing the visual collision risk of approaching vehicles around them. A collision risk-based crossing initiation model is proposed to characterize the time-dynamic nature of pedestrian crossing decisions. A simulation tool is established to reproduce pedestrian behavior by employing the proposed model and a social force model. Two datasets collected in a CAVE-based immersive pedestrian simulator are applied to calibrate and validate the model. The model predicts pedestrian crossing decisions across all traffic scenarios well. In particular, by considering the decision strategy that pedestrians compare the collision risk of surrounding traffic gaps, model performance is significantly improved. Moreover, the collision risk-based crossing initiation model accurately captures the timing of pedestrian crossing initiations within each gap. This work concisely demonstrates how pedestrians dynamically adapt their crossings in continuous traffic based on perceived collision risk, potentially providing insights into modeling coupled human-AV interactions or serving as a tool to realize human-like pedestrian road behavior in virtual AVs test platforms.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

The prediction of traffic flow is a challenging yet crucial problem in spatial-temporal analysis, which has recently gained increasing interest. In addition to spatial-temporal correlations, the functionality of urban areas also plays a crucial role in traffic flow prediction. However, the exploration of regional functional attributes mainly focuses on adding additional topological structures, ignoring the influence of functional attributes on regional traffic patterns. Different from the existing works, we propose a novel module named POI-MetaBlock, which utilizes the functionality of each region (represented by Point of Interest distribution) as metadata to further mine different traffic characteristics in areas with different functions. Specifically, the proposed POI-MetaBlock employs a self-attention architecture and incorporates POI and time information to generate dynamic attention parameters for each region, which enables the model to fit different traffic patterns of various areas at different times. Furthermore, our lightweight POI-MetaBlock can be easily integrated into conventional traffic flow prediction models. Extensive experiments demonstrate that our module significantly improves the performance of traffic flow prediction and outperforms state-of-the-art methods that use metadata.

We introduce an on-ground Pedestrian World Model, a computational model that can predict how pedestrians move around an observer in the crowd on the ground plane, but from just the egocentric-views of the observer. Our model, InCrowdFormer, fully leverages the Transformer architecture by modeling pedestrian interaction and egocentric to top-down view transformation with attention, and autoregressively predicts on-ground positions of a variable number of people with an encoder-decoder architecture. We encode the uncertainties arising from unknown pedestrian heights with latent codes to predict the posterior distributions of pedestrian positions. We validate the effectiveness of InCrowdFormer on a novel prediction benchmark of real movements. The results show that InCrowdFormer accurately predicts the future coordination of pedestrians. To the best of our knowledge, InCrowdFormer is the first-of-its-kind pedestrian world model which we believe will benefit a wide range of egocentric-view applications including crowd navigation, tracking, and synthesis.

The pedestrian crossing intention prediction problem is to estimate whether or not the target pedestrian will cross the street. State-of-the-art techniques heavily depend on visual data acquired through the front camera of the ego-vehicle to make a prediction of the pedestrian's crossing intention. Hence, the efficiency of current methodologies tends to decrease notably in situations where visual input is imprecise, for instance, when the distance between the pedestrian and ego-vehicle is considerable or the illumination levels are inadequate. To address the limitation, in this paper, we present the design, implementation, and evaluation of the first-of-its-kind pedestrian crossing intention prediction model based on integration of motion sensor data gathered through the smartwatch (or smartphone) of the pedestrian. We propose an innovative machine learning framework that effectively integrates motion sensor data with visual input to enhance the predictive accuracy significantly, particularly in scenarios where visual data may be unreliable. Moreover, we perform an extensive data collection process and introduce the first pedestrian intention prediction dataset that features synchronized motion sensor data. The dataset comprises 255 video clips that encompass diverse distances and lighting conditions. We trained our model using the widely-used JAAD and our own datasets and compare the performance with a state-of-the-art model. The results demonstrate that our model outperforms the current state-of-the-art method, particularly in cases where the distance between the pedestrian and the observer is considerable (more than 70 meters) and the lighting conditions are inadequate.

We present a novel convex formulation that models rigid and deformable bodies coupled through frictional contact. The formulation incorporates a new corotational material model with positive semi-definite Hessian, which allows us to extend our previous work on the convex formulation of compliant contact to model large body deformations. We rigorously characterize our approximations and present implementation details. With proven global convergence, effective warm-start, the ability to take large time steps, and specialized sparse algebra, our method runs robustly at interactive rates. We provide validation results and performance metrics on challenging simulations relevant to robotics applications. Our method is made available in the open-source robotics toolkit Drake.

Collective decision-making is an essential capability of large-scale multi-robot systems to establish autonomy on the swarm level. A large portion of literature on collective decision-making in swarm robotics focuses on discrete decisions selecting from a limited number of options. Here we assign a decentralized robot system with the task of exploring an unbounded environment, finding consensus on the mean of a measurable environmental feature, and aggregating at areas where that value is measured (e.g., a contour line). A unique quality of this task is a causal loop between the robots' dynamic network topology and their decision-making. For example, the network's mean node degree influences time to convergence while the currently agreed-on mean value influences the swarm's aggregation location, hence, also the network structure as well as the precision error. We propose a control algorithm and study it in real-world robot swarm experiments in different environments. We show that our approach is effective and achieves higher precision than a control experiment. We anticipate applications, for example, in containing pollution with surface vehicles.

Genito-Pelvic Pain/Penetration-Disorder (GPPPD) is a common disorder but rarely treated in routine care. Previous research documents that GPPPD symptoms can be treated effectively using internet-based psychological interventions. However, non-response remains common for all state-of-the-art treatments and it is unclear which patient groups are expected to benefit most from an internet-based intervention. Multivariable prediction models are increasingly used to identify predictors of heterogeneous treatment effects, and to allocate treatments with the greatest expected benefits. In this study, we developed and internally validated a multivariable decision tree model that predicts effects of an internet-based treatment on a multidimensional composite score of GPPPD symptoms. Data of a randomized controlled trial comparing the internet-based intervention to a waitlist control group (N =200) was used to develop a decision tree model using model-based recursive partitioning. Model performance was assessed by examining the apparent and bootstrap bias-corrected performance. The final pruned decision tree consisted of one splitting variable, joint dyadic coping, based on which two response clusters emerged. No effect was found for patients with low dyadic coping ($n$=33; $d$=0.12; 95% CI: -0.57-0.80), while large effects ($d$=1.00; 95%CI: 0.68-1.32; $n$=167) are predicted for those with high dyadic coping at baseline. The bootstrap-bias-corrected performance of the model was $R^2$=27.74% (RMSE=13.22).

eHMIs refers to a novel and explicit communication method for pedestrian-AV negotiation in interactions, such as in encounter scenarios. However, pedestrians with limited experience in negotiating with AVs could lack a comprehensive and correct understanding of the information on driving intentions' meaning as conveyed by AVs through eHMI, particularly in the current contexts where AV and eHMI are not yet mainstream. Consequently, pedestrians who misunderstand the driving intention of the AVs during the encounter may feel threatened and perform unpredictable behaviors. To solve this issue, this study proposes using the pre-instruction on the rationale of eHMI to help pedestrians correctly understand driving intentions and predict AV behavior. Consequently, this can improve their subjective feelings (ie. sense of danger, trust in AV, and sense of relief) and decision-making. In addition, this study suggests that the eHMI could better guide pedestrian behavior through the pre-instruction. The results of interaction experiments in the road crossing scene show that participants found it more difficult to recognize the situation when they encountered an AV without eHMI than when they encountered a manual driving vehicle (MV); in addition, participants' subjective feelings and hesitations while decision-making worsened significantly. After the pre-instruction, the participants could understand the driving intention of an AV with eHMI and predict driving behavior more easily. Furthermore, the participants' subjective feelings and hesitation to make decisions improved, reaching the same criteria used for MV. Moreover, this study found that the information guidance of using eHMI influenced the participants' walking speed, resulting in a small variation over the time horizon via multiple trials when they fully understood the principle of eHMI through the pre-instruction.

With the rising complexity of numerous novel applications that serve our modern society comes the strong need to design efficient computing platforms. Designing efficient hardware is, however, a complex multi-objective problem that deals with multiple parameters and their interactions. Given that there are a large number of parameters and objectives involved in hardware design, synthesizing all possible combinations is not a feasible method to find the optimal solution. One promising approach to tackle this problem is statistical modeling of a desired hardware performance. Here, we propose a model-based active learning approach to solve this problem. Our proposed method uses Bayesian models to characterize various aspects of hardware performance. We also use transfer learning and Gaussian regression bootstrapping techniques in conjunction with active learning to create more accurate models. Our proposed statistical modeling method provides hardware models that are sufficiently accurate to perform design space exploration as well as performance prediction simultaneously. We use our proposed method to perform design space exploration and performance prediction for various hardware setups, such as micro-architecture design and OpenCL kernels for FPGA targets. Our experiments show that the number of samples required to create performance models significantly reduces while maintaining the predictive power of our proposed statistical models. For instance, in our performance prediction setting, the proposed method needs 65% fewer samples to create the model, and in the design space exploration setting, our proposed method can find the best parameter settings by exploring less than 50 samples.

Advances in artificial intelligence often stem from the development of new environments that abstract real-world situations into a form where research can be done conveniently. This paper contributes such an environment based on ideas inspired by elementary Microeconomics. Agents learn to produce resources in a spatially complex world, trade them with one another, and consume those that they prefer. We show that the emergent production, consumption, and pricing behaviors respond to environmental conditions in the directions predicted by supply and demand shifts in Microeconomics. We also demonstrate settings where the agents' emergent prices for goods vary over space, reflecting the local abundance of goods. After the price disparities emerge, some agents then discover a niche of transporting goods between regions with different prevailing prices -- a profitable strategy because they can buy goods where they are cheap and sell them where they are expensive. Finally, in a series of ablation experiments, we investigate how choices in the environmental rewards, bartering actions, agent architecture, and ability to consume tradable goods can either aid or inhibit the emergence of this economic behavior. This work is part of the environment development branch of a research program that aims to build human-like artificial general intelligence through multi-agent interactions in simulated societies. By exploring which environment features are needed for the basic phenomena of elementary microeconomics to emerge automatically from learning, we arrive at an environment that differs from those studied in prior multi-agent reinforcement learning work along several dimensions. For example, the model incorporates heterogeneous tastes and physical abilities, and agents negotiate with one another as a grounded form of communication.

Trust has emerged as a key factor in people's interactions with AI-infused systems. Yet, little is known about what models of trust have been used and for what systems: robots, virtual characters, smart vehicles, decision aids, or others. Moreover, there is yet no known standard approach to measuring trust in AI. This scoping review maps out the state of affairs on trust in human-AI interaction (HAII) from the perspectives of models, measures, and methods. Findings suggest that trust is an important and multi-faceted topic of study within HAII contexts. However, most work is under-theorized and under-reported, generally not using established trust models and missing details about methods, especially Wizard of Oz. We offer several targets for systematic review work as well as a research agenda for combining the strengths and addressing the weaknesses of the current literature.

北京阿比特科技有限公司