A recent line of works, initiated by Russo and Xu, has shown that the generalization error of a learning algorithm can be upper bounded by information measures. In most of the relevant works, the convergence rate of the expected generalization error is in the form of $O(\sqrt{\lambda/n})$ where $\lambda$ is some information-theoretic quantities such as the mutual information or conditional mutual information between the data and the learned hypothesis. However, such a learning rate is typically considered to be ``slow", compared to a ``fast rate" of $O(\lambda/n)$ in many learning scenarios. In this work, we first show that the square root does not necessarily imply a slow rate, and a fast rate result can still be obtained using this bound under appropriate assumptions. Furthermore, we identify the critical conditions needed for the fast rate generalization error, which we call the $(\eta,c)$-central condition. Under this condition, we give information-theoretic bounds on the generalization error and excess risk, with a fast convergence rate for specific learning algorithms such as empirical risk minimization and its regularized version. Finally, several analytical examples are given to show the effectiveness of the bounds.
The Moore-Penrose inverse is widely used in physics, statistics, and various fields of engineering. It captures well the notion of inversion of linear operators in the case of overcomplete data. In data science, nonlinear operators are extensively used. In this paper we characterize the fundamental properties of a pseudo-inverse (PI) for nonlinear operators. The concept is defined broadly. First for general sets, and then a refinement for normed spaces. The PI for normed spaces yields the Moore-Penrose inverse when the operator is a matrix. We present conditions for existence and uniqueness of a PI and establish theoretical results investigating its properties, such as continuity, its value for operator compositions and projection operators, and others. Analytic expressions are given for the PI of some well-known, non-invertible, nonlinear operators, such as hard- or soft-thresholding and ReLU. Finally, we analyze a neural layer and discuss relations to wavelet thresholding.
This paper proposes a method for learning continuous control policies for active landmark localization and exploration using an information-theoretic cost. We consider a mobile robot detecting landmarks within a limited sensing range, and tackle the problem of learning a control policy that maximizes the mutual information between the landmark states and the sensor observations. We employ a Kalman filter to convert the partially observable problem in the landmark state to Markov decision process (MDP), a differentiable field of view to shape the reward, and an attention-based neural network to represent the control policy. The approach is further unified with active volumetric mapping to promote exploration in addition to landmark localization. The performance is demonstrated in several simulated landmark localization tasks in comparison with benchmark methods.
A common pipeline in learning-based control is to iteratively estimate a model of system dynamics, and apply a trajectory optimization algorithm - e.g.~$\mathtt{iLQR}$ - on the learned model to minimize a target cost. This paper conducts a rigorous analysis of a simplified variant of this strategy for general nonlinear systems. We analyze an algorithm which iterates between estimating local linear models of nonlinear system dynamics and performing $\mathtt{iLQR}$-like policy updates. We demonstrate that this algorithm attains sample complexity polynomial in relevant problem parameters, and, by synthesizing locally stabilizing gains, overcomes exponential dependence in problem horizon. Experimental results validate the performance of our algorithm, and compare to natural deep-learning baselines.
We study connections between differential equations and optimization algorithms for $m$-strongly and $L$-smooth convex functions through the use of Lyapunov functions by generalizing the Linear Matrix Inequality framework developed by Fazylab et al. in 2018. Using the new framework we derive analytically a new (discrete) Lyapunov function for a two-parameter family of Nesterov optimization methods and characterize their convergence rate. This allows us to prove a convergence rate that improves substantially on the previously proven rate of Nesterov's method for the standard choice of coefficients, as well as to characterize the choice of coefficients that yields the optimal rate. We obtain a new Lyapunov function for the Polyak ODE and revisit the connection between this ODE and the Nesterov's algorithms. In addition discuss a new interpretation of Nesterov method as an additive Runge-Kutta discretization and explain the structural conditions that discretizations of the Polyak equation should satisfy in order to lead to accelerated optimization algorithms.
Recent studies have experimentally shown that we can achieve in non-Euclidean metric space effective and efficient graph embedding, which aims to obtain the vertices' representations reflecting the graph's structure in the metric space. Specifically, graph embedding in hyperbolic space has experimentally succeeded in embedding graphs with hierarchical-tree structure, e.g., data in natural languages, social networks, and knowledge bases. However, recent theoretical analyses have shown a much higher upper bound on non-Euclidean graph embedding's generalization error than Euclidean one's, where a high generalization error indicates that the incompleteness and noise in the data can significantly damage learning performance. It implies that the existing bound cannot guarantee the success of graph embedding in non-Euclidean metric space in a practical training data size, which can prevent non-Euclidean graph embedding's application in real problems. This paper provides a novel upper bound of graph embedding's generalization error by evaluating the local Rademacher complexity of the model as a function set of the distances of representation couples. Our bound clarifies that the performance of graph embedding in non-Euclidean metric space, including hyperbolic space, is better than the existing upper bounds suggest. Specifically, our new upper bound is polynomial in the metric space's geometric radius $R$ and can be $O(\frac{1}{S})$ at the fastest, where $S$ is the training data size. Our bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(\frac{1}{\sqrt{S}})$ at the fastest. Specific calculations on example cases show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
Safety is often the most important requirement in robotics applications. Nonetheless, control techniques that can provide safety guarantees are still extremely rare for nonlinear systems, such as robot manipulators. A well-known tool to ensure safety is the Viability kernel, which is the largest set of states from which safety can be ensured. Unfortunately, computing such a set for a nonlinear system is extremely challenging in general. Several numerical algorithms for approximating it have been proposed in the literature, but they suffer from the curse of dimensionality. This paper presents a new approach for numerically approximating the viability kernel of robot manipulators. Our approach solves optimal control problems to compute states that are guaranteed to be on the boundary of the set. This allows us to learn directly the set boundary, therefore learning in a smaller dimensional space. Compared to the state of the art on systems up to dimension 6, our algorithm resulted to be more than 2 times as accurate for the same computation time, or 6 times as fast to reach the same accuracy.
Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.
The {\em binary deletion channel} with deletion probability $d$ ($\text{BDC}_d$) is a random channel that deletes each bit of the input message i.i.d with probability $d$. It has been studied extensively as a canonical example of a channel with synchronization errors. Perhaps the most important question regarding the BDC is determining its capacity. Mitzenmacher and Drinea (ITIT 2006) and Kirsch and Drinea (ITIT 2009) show a method by which distributions on run lengths can be converted to codes for the BDC, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1185 \cdot (1-d)$. Fertonani and Duman (ITIT 2010), Dalai (ISIT 2011) and Rahmati and Duman (ITIT 2014) use computer aided analyses based on the Blahut-Arimoto algorithm to prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.4143\cdot(1-d)$ in the high deletion probability regime ($d > 0.65$). In this paper, we show that the Blahut-Arimoto algorithm can be implemented with a lower space complexity, allowing us to extend the upper bound analyses, and prove an upper bound of $\mathcal{C}(\text{BDC}_d) < 0.3745 \cdot(1-d)$ for all $d \geq 0.68$. Furthermore, we show that an extension of the Blahut-Arimoto algorithm can also be used to select better run length distributions for Mitzenmacher and Drinea's construction, yielding a lower bound of $\mathcal{C}(\text{BDC}_d) > 0.1221 \cdot (1 - d)$.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.