亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We survey recent contributions to finite element exterior calculus on manifolds and surfaces within a comprehensive formalism for the error analysis of vector-valued partial differential equations on manifolds. Our primary focus is on uniformly bounded commuting projections on manifolds: these projections map from Sobolev de Rham complexes onto finite element de Rham complexes, commute with the differential operators, and satisfy uniform bounds in Lebesgue norms. They enable the Galerkin theory of Hilbert complexes for a large range of intrinsic finite element methods on manifolds. However, these intrinsic finite element methods are generally not computable and thus primarily of theoretical interest. This leads to our second point: estimating the geometric variational crime incurred by transitioning to computable approximate problems. Lastly, our third point addresses how to estimate the approximation error of the intrinsic finite element method in terms of the mesh size. If the solution is not continuous, then such an estimate is achieved via modified Cl\'ement or Scott-Zhang interpolants that facilitate a broken Bramble--Hilbert lemma.

相關內容

The current study investigates the asymptotic spectral properties of a finite difference approximation of nonlocal Helmholtz equations with a Caputo fractional Laplacian and a variable coefficient wave number $\mu$, as it occurs when considering a wave propagation in complex media, characterized by nonlocal interactions and spatially varying wave speeds. More specifically, by using tools from Toeplitz and generalized locally Toeplitz theory, the present research delves into the spectral analysis of nonpreconditioned and preconditioned matrix-sequences. We report numerical evidences supporting the theoretical findings. Finally, open problems and potential extensions in various directions are presented and briefly discussed.

We consider the numerical behavior of the fixed-stress splitting method for coupled poromechanics as undrained regimes are approached. We explain that pressure stability is related to the splitting error of the scheme, not the fact that the discrete saddle point matrix never appears in the fixed-stress approach. This observation reconciles previous results regarding the pressure stability of the splitting method. Using examples of compositional poromechanics with application to geological CO$_2$ sequestration, we see that solutions obtained using the fixed-stress scheme with a low order finite element-finite volume discretization which is not inherently inf-sup stable can exhibit the same pressure oscillations obtained with the corresponding fully implicit scheme. Moreover, pressure jump stabilization can effectively remove these spurious oscillations in the fixed-stress setting, while also improving the efficiency of the scheme in terms of the number of iterations required at every time step to reach convergence.

We propose a simple empirical representation of expectations such that: For a number of samples above a certain threshold, drawn from any probability distribution with finite fourth-order statistic, the proposed estimator outperforms the empirical average when tested against the actual population, with respect to the quadratic loss. For datasets smaller than this threshold, the result still holds, but for a class of distributions determined by their first four statistics. Our approach leverages the duality between distributionally robust and risk-averse optimization.

For a model convection-diffusion problem, we obtain new error estimates for a general upwinding finite element discretization based on bubble modification of the test space. The key analysis tool is based on finding representations of the optimal norms on the trial spaces at the continuous and discrete levels. We analyze and compare the standard linear discretization, the saddle point least square and upwinding Petrov-Galerkin methods. We conclude that the bubble upwinding Petrov-Galerkin method is the most performant discretization for the one dimensional model. Our results for the model convection-diffusion problem can be extended for creating new and efficient discretizations for the multidimensional cases.

Retinopathy of prematurity (ROP) is a severe condition affecting premature infants, leading to abnormal retinal blood vessel growth, retinal detachment, and potential blindness. While semi-automated systems have been used in the past to diagnose ROP-related plus disease by quantifying retinal vessel features, traditional machine learning (ML) models face challenges like accuracy and overfitting. Recent advancements in deep learning (DL), especially convolutional neural networks (CNNs), have significantly improved ROP detection and classification. The i-ROP deep learning (i-ROP-DL) system also shows promise in detecting plus disease, offering reliable ROP diagnosis potential. This research comprehensively examines the contemporary progress and challenges associated with using retinal imaging and artificial intelligence (AI) to detect ROP, offering valuable insights that can guide further investigation in this domain. Based on 89 original studies in this field (out of 1487 studies that were comprehensively reviewed), we concluded that traditional methods for ROP diagnosis suffer from subjectivity and manual analysis, leading to inconsistent clinical decisions. AI holds great promise for improving ROP management. This review explores AI's potential in ROP detection, classification, diagnosis, and prognosis.

Instrumental variables are widely used in econometrics and epidemiology for identifying and estimating causal effects when an exposure of interest is confounded by unmeasured factors. Despite this popularity, the assumptions invoked to justify the use of instruments differ substantially across the literature. Similarly, statistical approaches for estimating the resulting causal quantities vary considerably, and often rely on strong parametric assumptions. In this work, we compile and organize structural conditions that nonparametrically identify conditional average treatment effects, average treatment effects among the treated, and local average treatment effects, with a focus on identification formulae invoking the conditional Wald estimand. Moreover, we build upon existing work and propose nonparametric efficient estimators of functionals corresponding to marginal and conditional causal contrasts resulting from the various identification paradigms. We illustrate the proposed methods on an observational study examining the effects of operative care on adverse events for cholecystitis patients, and a randomized trial assessing the effects of market participation on political views.

Often the question arises whether $Y$ can be predicted based on $X$ using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of $(X_i, Y_j)$. It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.

Motivated by the important statistical role of sparsity, the paper uncovers four reparametrizations for covariance matrices in which sparsity is associated with conditional independence graphs in a notional Gaussian model. The intimate relationship between the Iwasawa decomposition of the general linear group and the open cone of positive definite matrices allows a unifying perspective. Specifically, the positive definite cone can be reconstructed without loss or redundancy from the exponential map applied to four Lie subalgebras determined by the Iwasawa decomposition of the general linear group. This accords geometric interpretations to the reparametrizations and the corresponding notion of sparsity. Conditions that ensure legitimacy of the reparametrizations for statistical models are identified. While the focus of this work is on understanding population-level structure, there are strong methodological implications. In particular, since the population-level sparsity manifests in a vector space, imposition of sparsity on relevant sample quantities produces a covariance estimate that respects the positive definite cone constraint.

A cyclic proof system is a proof system whose proof figure is a tree with cycles. The cut-elimination in a proof system is fundamental. It is conjectured that the cut-elimination in the cyclic proof system for first-order logic with inductive definitions does not hold. This paper shows that the conjecture is correct by giving a sequent not provable without the cut rule but provable in the cyclic proof system.

This paper investigates the supercloseness of a singularly perturbed convection diffusion problem using the direct discontinuous Galerkin (DDG) method on a Shishkin mesh. The main technical difficulties lie in controlling the diffusion term inside the layer, the convection term outside the layer, and the inter element jump term caused by the discontinuity of the numerical solution. The main idea is to design a new composite interpolation, in which a global projection is used outside the layer to satisfy the interface conditions determined by the selection of numerical flux, thereby eliminating or controlling the troublesome terms on the unit interface; and inside the layer, Gau{\ss} Lobatto projection is used to improve the convergence order of the diffusion term. On the basis of that, by selecting appropriate parameters in the numerical flux, we obtain the supercloseness result of almost $k+1$ order under an energy norm. Numerical experiments support our main theoretical conclusion.

北京阿比特科技有限公司