亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a two sensor distributed detection system transmitting a binary non-uniform source over a Gaussian multiple access channel (MAC). We model the network via binary sensors whose outputs are generated by binary symmetric channels of different noise levels. We prove an optimal one dimensional constellation design under individual sensor power constraints which minimizes the error probability of detecting the source. Three distinct cases arise for this optimization based on the parameters in the problem setup. In the most notable case (Case III), the optimal signaling design is to not necessarily use all of the power allocated to the more noisy sensor (with less correlation to the source). We compare the error performance of the optimal one dimensional constellation to orthogonal signaling. The results show that the optimal one dimensional constellation achieves lower error probability than using orthogonal channels.

相關內容

Reusable embeddings of user behaviour have shown significant performance improvements for the personalised saliency prediction task. However, prior works require explicit user characteristics and preferences as input, which are often difficult to obtain. We present a novel method to extract user embeddings from pairs of natural images and corresponding saliency maps generated from a small amount of user-specific eye tracking data. At the core of our method is a Siamese convolutional neural encoder that learns the user embeddings by contrasting the image and personal saliency map pairs of different users. Evaluations on two public saliency datasets show that the generated embeddings have high discriminative power, are effective at refining universal saliency maps to the individual users, and generalise well across users and images. Finally, based on our model's ability to encode individual user characteristics, our work points towards other applications that can benefit from reusable embeddings of gaze behaviour.

Deep learning techniques have significantly advanced in providing accurate visual odometry solutions by leveraging large datasets. However, generating uncertainty estimates for these methods remains a challenge. Traditional sensor fusion approaches in a Bayesian framework are well-established, but deep learning techniques with millions of parameters lack efficient methods for uncertainty estimation. This paper addresses the issue of uncertainty estimation for pre-trained deep-learning models in monocular visual odometry. We propose formulating a factor graph on an implicit layer of the deep learning network to recover relative covariance estimates, which allows us to determine the covariance of the Visual Odometry (VO) solution. We showcase the consistency of the deep learning engine's covariance approximation with an empirical analysis of the covariance model on the EUROC datasets to demonstrate the correctness of our formulation.

Alignment with human preference prevents large language models (LLMs) from generating misleading or toxic content while requiring high-cost human feedback. Assuming resources of human annotation are limited, there are two different ways of allocating considered: more diverse PROMPTS or more diverse RESPONSES to be labeled. Nonetheless, a straightforward comparison between their impact is absent. In this work, we first control the diversity of both sides according to the number of samples for fine-tuning, which can directly reflect their influence. We find that instead of numerous prompts, more responses but fewer prompts better trigger LLMs for human alignment. Additionally, the concept of diversity for prompts can be more complex than responses that are typically quantified by single digits. Consequently, a new formulation of prompt diversity is proposed, further implying a linear correlation with the final performance of LLMs after fine-tuning. We also leverage it on data augmentation and conduct experiments to show its effect on different algorithms.

Reconfigurable intelligent surface (RIS) and ambient backscatter communication (AmBC) have been envisioned as two promising technologies due to their high transmission reliability as well as energy-efficiency. This paper investigates the secrecy performance of RIS assisted AmBC networks. New closed-form and asymptotic expressions of secrecy outage probability for RIS-AmBC networks are derived by taking into account both imperfect successive interference cancellation (ipSIC) and perfect SIC (pSIC) cases. On top of these, the secrecy diversity order of legitimate user is obtained in high signal-to-noise ratio region, which equals \emph{zero} and is proportional to the number of RIS elements for ipSIC and pSIC, respectively. The secrecy throughput and energy efficiency are further surveyed to evaluate the secure effectiveness of RIS-AmBC networks. Numerical results are provided to verify the accuracy of theoretical analyses and manifest that: i) The secrecy outage behavior of RIS-AmBC networks exceeds that of conventional AmBC networks; ii) Due to the mutual interference between direct and backscattering links, the number of RIS elements has an optimal value to minimise the secrecy system outage probability; and iii) Secrecy throughput and energy efficiency are strongly influenced by the reflecting coefficient and eavesdropper's wiretapping ability.

The commercialization of large language models (LLMs) has led to the common practice of high-level API-only access to proprietary models. In this work, we show that even with a conservative assumption about the model architecture, it is possible to learn a surprisingly large amount of non-public information about an API-protected LLM from a relatively small number of API queries (e.g., costing under $1,000 for OpenAI's gpt-3.5-turbo). Our findings are centered on one key observation: most modern LLMs suffer from a softmax bottleneck, which restricts the model outputs to a linear subspace of the full output space. We show that this lends itself to a model image or a model signature which unlocks several capabilities with affordable cost: efficiently discovering the LLM's hidden size, obtaining full-vocabulary outputs, detecting and disambiguating different model updates, identifying the source LLM given a single full LLM output, and even estimating the output layer parameters. Our empirical investigations show the effectiveness of our methods, which allow us to estimate the embedding size of OpenAI's gpt-3.5-turbo to be about 4,096. Lastly, we discuss ways that LLM providers can guard against these attacks, as well as how these capabilities can be viewed as a feature (rather than a bug) by allowing for greater transparency and accountability.

Large language models (LLMs) have recently demonstrated a remarkable ability to generate code from natural language (NL) prompts. However, in the real world, NL is often too ambiguous to capture the true intent behind programming problems, requiring additional input-output (I/O) specifications. Unfortunately, LLMs can have difficulty aligning their outputs with both the NL prompt and the I/O specification. In this paper, we give a way to mitigate this issue in the context of data science programming, where tasks require explicit I/O specifications for clarity. Specifically, we propose GIFT4Code, a novel approach for the instruction fine-tuning of LLMs with respect to I/O specifications. Our method leverages synthetic data produced by the LLM itself and utilizes execution-derived feedback as a key learning signal. This feedback, in the form of program I/O specifications, is provided to the LLM to facilitate instruction fine-tuning. We evaluated our approach on two challenging data science benchmarks, Arcade and DS-1000. The results demonstrate a significant improvement in the LLM's ability to generate code that is not only executable but also accurately aligned with user specifications, substantially improving the quality of code generation for complex data science tasks.

We propose EmoDistill, a novel speech emotion recognition (SER) framework that leverages cross-modal knowledge distillation during training to learn strong linguistic and prosodic representations of emotion from speech. During inference, our method only uses a stream of speech signals to perform unimodal SER thus reducing computation overhead and avoiding run-time transcription and prosodic feature extraction errors. During training, our method distills information at both embedding and logit levels from a pair of pre-trained Prosodic and Linguistic teachers that are fine-tuned for SER. Experiments on the IEMOCAP benchmark demonstrate that our method outperforms other unimodal and multimodal techniques by a considerable margin, and achieves state-of-the-art performance of 77.49% unweighted accuracy and 78.91% weighted accuracy. Detailed ablation studies demonstrate the impact of each component of our method.

Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.

Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司