In this paper we study the problem of maximizing the distance to a given point over an intersection of balls. It was already known that this problem can be solved in polynomial time and space if the given point is not in the convex hull of the balls centers. The cases where the given point is in the convex hull of the balls centers include all NP-complete problems as we show. Some novel results are given in this area. A novel projection algorithm is developed then applied in the context of the Subset Sum Problem (SSP). Under the assumption that the SSP has at most one solution, we provide a quasi-polynomial algorithm, which decreases the radius of an initial ball containing the solution to the SSP. We perform some numerical tests which show the effectiveness of the proposed algorithm.
In this paper, we propose a reinforcement learning algorithm to solve a multi-agent Markov decision process (MMDP). The goal, inspired by Blackwell's Approachability Theorem, is to lower the time average cost of each agent to below a pre-specified agent-specific bound. For the MMDP, we assume the state dynamics to be controlled by the joint actions of agents, but the per-stage costs to only depend on the individual agent's actions. We combine the Q-learning algorithm for a weighted combination of the costs of each agent, obtained by a gossip algorithm with the Metropolis-Hastings or Multiplicative Weights formalisms to modulate the averaging matrix of the gossip. We use multiple timescales in our algorithm and prove that under mild conditions, it approximately achieves the desired bounds for each of the agents. We also demonstrate the empirical performance of this algorithm in the more general setting of MMDPs having jointly controlled per-stage costs.
Given the ubiquity of non-separable optimization problems in real worlds, in this paper we analyze and extend the large-scale version of the well-known cooperative coevolution (CC), a divide-and-conquer black-box optimization framework, on non-separable functions. First, we reveal empirical reasons of when decomposition-based methods are preferred or not in practice on some non-separable large-scale problems, which have not been clearly pointed out in many previous CC papers. Then, we formalize CC to a continuous-game model via simplification, but without losing its essential property. Different from previous evolutionary game theory for CC, our new model provides a much simpler but useful viewpoint to analyze its convergence, since only the pure Nash equilibrium concept is needed and more general fitness landscapes can be explicitly considered. Based on convergence analyses, we propose a hierarchical decomposition strategy for better generalization, as for any decomposition, there is a risk of getting trapped into a suboptimal Nash equilibrium. Finally, we use powerful distributed computing to accelerate it under the recent multi-level learning framework, which combines the fine-tuning ability from decomposition with the invariance property of CMA-ES. Experiments on a set of high-dimensional test functions validate both its search performance and scalability (w.r.t. CPU cores) on a clustering computing platform with 400 CPU cores.
This paper presents a new simulation-based approach to address the stochastic Dynamic Traffic Assignment (DTA) problem, focusing on large congested networks and dynamic settings. The proposed methodology incorporates a random walk model inspired by the theoretical concept of the \textit{equivalent impedance} method, specifically designed to overcome the limitations of traditional Multinomial Logit (MNL) models in handling overlapping routes and scaling issues. By iteratively contracting non-overlapping subnetworks into virtual links and computing equivalent virtual travel costs, the route choice decision-making process is shifted to intersections, enabling a more accurate representation of travelers' choices as traffic conditions evolve and allowing more accurate performance under fine-grained temporal segmentation. The approach leverages Directed Acyclic Graphs (DAGs) structure to efficiently find all routes between two nodes, thus obviating the need for route enumeration, which is intractable in general networks. While with the calculation approach of downstream node choice probabilities, all available routes in the network can be selected with non-zero probability. To evaluate the effectiveness of the proposed method, experiments are conducted on two synthetic networks under congested demand scenarios using Simulation of Urban MObility (SUMO), an open-source microscopic traffic simulation software. The results demonstrate the method's robustness, faster convergence, and realistic trip distribution compared to traditional route assignment methods, making it an ideal proposal for real-time or resource-intensive applications such as microscopic demand calibration.
In this paper, we describe how we changed the structure of problem sessions in an algorithmic subject, in order to improve student confidence. The subject in question is taught to very large cohorts of (around 900) students, though our approach can be applied more broadly. We reflect on our experiences over a number of years, including during the pandemic, and show that by adding clear sectioning indicating the style of the questions and by including simple warm-up questions, student engagement and confidence improves, while making the teaching activities of our teaching assistants easier to manage.
In this study, we introduce an innovative Quantum-enhanced Support Vector Machine (QSVM) approach for stellar classification, leveraging the power of quantum computing and GPU acceleration. Our QSVM algorithm significantly surpasses traditional methods such as K-Nearest Neighbors (KNN) and Logistic Regression (LR), particularly in handling complex binary and multi-class scenarios within the Harvard stellar classification system. The integration of quantum principles notably enhances classification accuracy, while GPU acceleration using the cuQuantum SDK ensures computational efficiency and scalability for large datasets in quantum simulators. This synergy not only accelerates the processing process but also improves the accuracy of classifying diverse stellar types, setting a new benchmark in astronomical data analysis. Our findings underscore the transformative potential of quantum machine learning in astronomical research, marking a significant leap forward in both precision and processing speed for stellar classification. This advancement has broader implications for astrophysical and related scientific fields
Given the complex geometry of white matter streamlines, Autoencoders have been proposed as a dimension-reduction tool to simplify the analysis streamlines in a low-dimensional latent spaces. However, despite these recent successes, the majority of encoder architectures only perform dimension reduction on single streamlines as opposed to a full bundle of streamlines. This is a severe limitation of the encoder architecture that completely disregards the global geometric structure of streamlines at the expense of individual fibers. Moreover, the latent space may not be well structured which leads to doubt into their interpretability. In this paper we propose a novel Differentiable Vector Quantized Variational Autoencoder, which are engineered to ingest entire bundles of streamlines as single data-point and provides reliable trustworthy encodings that can then be later used to analyze streamlines in the latent space. Comparisons with several state of the art Autoencoders demonstrate superior performance in both encoding and synthesis.
Emotion is an intricate physiological response that plays a crucial role in how we respond and cooperate with others in our daily affairs. Numerous experiments have been evolved to recognize emotion, however still require exploration to intensify the performance. To enhance the performance of effective emotion recognition, this study proposes a subject-dependent robust end-to-end emotion recognition system based on a 1D convolutional neural network (1D-CNN). We evaluate the SJTU\footnote{\href{//en.wikipedia.org/wiki/Shanghai_Jiao_Tong_University}{Shanghai Jiao Tong University(SJTU)}} Emotion EEG Dataset SEED-V with five emotions (happy, sad, neural, fear, and disgust). To begin with, we utilize the Fast Fourier Transform (FFT) to decompose the raw EEG signals into six frequency bands and extract the power spectrum feature from the frequency bands. After that, we combine the extracted power spectrum feature with eye movement and differential entropy (DE) features. Finally, for classification, we apply the combined data to our proposed system. Consequently, it attains 99.80\% accuracy which surpasses each prior state-of-the-art system.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.
To quickly obtain new labeled data, we can choose crowdsourcing as an alternative way at lower cost in a short time. But as an exchange, crowd annotations from non-experts may be of lower quality than those from experts. In this paper, we propose an approach to performing crowd annotation learning for Chinese Named Entity Recognition (NER) to make full use of the noisy sequence labels from multiple annotators. Inspired by adversarial learning, our approach uses a common Bi-LSTM and a private Bi-LSTM for representing annotator-generic and -specific information. The annotator-generic information is the common knowledge for entities easily mastered by the crowd. Finally, we build our Chinese NE tagger based on the LSTM-CRF model. In our experiments, we create two data sets for Chinese NER tasks from two domains. The experimental results show that our system achieves better scores than strong baseline systems.